Advertisement

Biologia

, Volume 74, Issue 8, pp 1031–1043 | Cite as

Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch

  • Ajar Nath Yadav
  • Sneha Gulati
  • Divya Sharma
  • Ram Nageena Singh
  • Mahendra Vikram Singh Rajawat
  • Rajesh Kumar
  • Rinku Dey
  • Kamal Krishna Pal
  • Rajeev Kaushik
  • Anil Kumar SaxenaEmail author
Original Article
  • 40 Downloads

Abstract

Archaea are unique microorganisms that are present in ecological niches of high temperature, pH and high salinity. Archaea may be present freely or associated with plant rhizosphere. The plant-microbe interactions may be implicit to plants adaptation to abiotic stress of hypersalinity. With an aim to look for population dynamics of archaea at different seasons of the year in hypersaline environments of Rann of Kutch, the rhizospheric, non-rhizospheric, water and sediment samples were collected during autumn, winter and summer. Sampling sites were selected on the basis of topography and vegetation which included barren land, salt pan and rhizosphere of monocot and dicot plants. Soil pH and salinity (mS cm−1) varied from 7.4–10.15 and 1.19–106.7 respectively. A total of 157 halophilic archaea were isolated using seven different selective media. The isolated archaeal were screened for abiotic stress and it has been found they show the wide range of in the tolerance to temperatures (25–65 °C), NaCl concentrations (0.86–5.48 M), water stresses (upto −0.75Mpa) and pH (4–10). The profiling of archaeal community using 16S rRNA gene sequencing and phylogenetic analysis revealed that all archaeal isolates belonged to a family halobacteriaceae of phylum euryarchaeota. Based on 16S rRNA gene sequencing the cultures were identified and belonged to twenty eight distinct species of 16 genera namely Haladaptatus, Haloarcula, Halobacterium, Halococcus, Haloferax, Halogeometricum, Halolamina, Halopenitus, Halorubrum, Halosarcina, Halostagnicola, Haloterrigena, Natrialba, Natrinema, Natronoarchaeum and Natronomonas. In the present study, seasonal and niche-specific archaea were reported and characterized from hypersaline environments. The haloarchaea with multifunctional plant growth promoting attributes, prevalent in the hypersaline environments must be colonizing the rhizosphere of plants and contributing to the growth and sustenance of plants.

Keywords

Archaeal biodiversity Haloarchaea Hypersaline Population dynamics Rann of Kutch 

Notes

Acknowledgments

The authors are grateful to the Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi and National Fund for Basic, Strategic and Frontier Application Research in Agriculture (NFBSFARA) project “Role of Archaebacteria in Alleviation of Salinity and Moisture Stress in Plants” Indian Council of Agricultural Research for providing the facilities and financial support, to undertake the investigations.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11756_2019_259_MOESM1_ESM.doc (154 kb)
ESM 1 (DOC 154 kb)

References

  1. Asker D, Ohta Y (2002) Haloferax alexandrinus sp. nov., an extremely halophilic canthaxanthin-producing archaeon from a solar saltern in Alexandria (Egypt). Int J Syst Evol Microbiol 52:729–738.  https://doi.org/10.1099/00207713-52-3-729 Google Scholar
  2. Bodaker I et al (2010) Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME J 4:399–407.  https://doi.org/10.1038/ismej.2009.141 CrossRefGoogle Scholar
  3. Budakoglu M, Kurt H, Karaman M, Kumru M, Kumral M, Akarsubaşi AT (2014) Archaeal microbial diversity of hypersaline Lake Acıgöl, Denizli, Turkey. Geomicrobiol J 31:454–460.  https://doi.org/10.1080/01490451.2013.866994 CrossRefGoogle Scholar
  4. Chen Z, Wang X, Shang H (2015) Structure and function of rhizosphere and non-rhizosphere soil microbial community respond differently to elevated ozone in field-planted wheat. J Environ Sci 32:126–134.  https://doi.org/10.1016/j.jes.2014.12.018 CrossRefGoogle Scholar
  5. Cui H-L, Gao X, Yang X, Xu X-W (2011) Halolamina pelagica gen. Nov., sp. nov., a new member of the family Halobacteriaceae. Int J Syst Evol Microbiol 61:1617–1621.  https://doi.org/10.1099/ijs.0.026799-0 CrossRefGoogle Scholar
  6. Dang H, Luan X-W, Chen R, Zhang X, Guo L, Klotz MG (2010) Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea. FEMS Microbiol Ecol 72:370–385.  https://doi.org/10.1111/j.1574-6941.2010.00870.x CrossRefGoogle Scholar
  7. Dave B, Anshuman K, Hajela P (2006) Siderophores of halophilic Archaea and their chemical characterization. Indian J Exp Biol 44:340. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16629380. Accessed 25 April 2019
  8. De León KB, Gerlach R, Peyton BM, Fields MW (2013) Archaeal and bacterial communities in three alkaline hot springs in heart Lake Geyser Basin, Yellowstone National Park. Front Microbiol 4:330.  https://doi.org/10.3389/fmicb.2013.00330 Google Scholar
  9. DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50:470–478. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12116647
  10. Dong X, Chen Z (2012) Psychrotolerant methanogenic archaea: diversity and cold adaptation mechanisms. Sci China Life Sci 55:415–421.  https://doi.org/10.1007/s11427-012-4320-0 CrossRefGoogle Scholar
  11. Elshahed MS, Najar FZ, Roe BA, Oren A, Dewers TA, Krumholz LR (2004) Survey of archaeal diversity reveals an abundance of halophilic archaea in a low-salt, sulfide-and sulfur-rich spring. Appl Environ Microbiol 70:2230–2239.  https://doi.org/10.1128/AEM.70.4.2230-2239.2004 CrossRefGoogle Scholar
  12. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15. Available at: https://www.jstor.org/stable/2461605. Accessed 25 April 2019
  13. Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc 5:1–2.  https://doi.org/10.1128/genomeA.01593-16 CrossRefGoogle Scholar
  14. Goh F, Leuko S, Allen MA, Bowman JP, Kamekura M, Neilan BA, Burns BP (2006) Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst Evol Microbiol 56:1323–1329.  https://doi.org/10.1099/ijs.0.64180-0 CrossRefGoogle Scholar
  15. Gutierrez CM, Kamekura M, Holmes ML, Dyall-Smith ML, Ventosa A (2002) Taxonomic characterization of Haloferax sp. (" H. alicantei") strain aa 2.2: description of Haloferax lucentensis sp. nov. Extremophiles 6:479–483.  https://doi.org/10.1007/s00792-002-0282-7 CrossRefGoogle Scholar
  16. Han D, Cui H-L (2014) Halobacterium rubrum sp. nov., isolated from a marine solar saltern. Arch Microbiol 196:847–851.  https://doi.org/10.1099/ijsem.0.00225 CrossRefGoogle Scholar
  17. Ihara K, Watanabe S, Tamura T (1997) Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., two new extremely halophilic archaea collected in Argentina. Int J Syst Bacteriol 47:73–77.  https://doi.org/10.1099/00207713-47-1-73 CrossRefGoogle Scholar
  18. Kanekar PP, Kulkarni SO, Kanekar SP, Shouche Y, Jani K, Sharma A (2015) Exploration of a haloarchaeon, Halostagnicola larsenii, isolated from rock pit sea water, west coast of Maharashtra, India, for the production of bacteriorhodopsin. J Appl Microbiol 118:1345–1356.  https://doi.org/10.1111/jam.12784 CrossRefGoogle Scholar
  19. Kocur M, Hodgkiss W (1973) Taxonomic status of the genus Halococcus Schoop. Int J Syst Bacteriol 23:151–156.  https://doi.org/10.1099/ijs.0.000151 CrossRefGoogle Scholar
  20. Kushner D (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Microbial life in extreme environments. pp317–368Google Scholar
  21. Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Curr Iss Mol Biol 2:125–131. Available at: https://www.ncbi.nlm.nih.gov/pubmed/11471757. Accessed 25 April 2019
  22. Liu Y, Yao T, Jiao N, Liu X, Kang S, Luo T (2013) Seasonal dynamics of the bacterial community in Lake Namco, the largest Tibetan lake. Geomicrobiol J 30:17–28.  https://doi.org/10.1080/01490451.2011.638700 CrossRefGoogle Scholar
  23. McGenity TJ, Gemmell RT, Grant WD (1998) Proposal of a new halobacterial genus Natrinema gen. Nov., with two species Natrinema pellirubrum nom. Nov. and Natrinema pallidum nom. Nov. Int J Syst Bacteriol 48:1187–1196.  https://doi.org/10.1099/00207713-48-4-1187 CrossRefGoogle Scholar
  24. Mishra RR, Swain MR, Dangar TK, Thatoi H (2012) Diversity and seasonal fluctuation of predominant microbial communities in Bhitarkanika, a tropical mangrove ecosystem in India. Int J Trop Biol 60.909–924. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23894955. Accessed 25 April 2019
  25. Montalvo-Rodríguez R, López-Garriga J, Vreeland RH, Oren A, Ventosa A, Kamekura M (2000) Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int J Syst Evol Microbiol 50:1065–1071.  https://doi.org/10.1099/ijs.0.64895-0 CrossRefGoogle Scholar
  26. Mullakhanbhai MF, Larsen H (1975) Halobacterium volcanii spec. Nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207–214.  https://doi.org/10.1007/BF00447326 CrossRefGoogle Scholar
  27. Nagaoka S, Minegishi H, Echigo A, Usami R (2010) Halostagnicola kamekurae sp. nov., an extremely halophilic archaeon from solar salt. Int J Syst Evol Microbiol 60:2828–2831.  https://doi.org/10.1099/ijs.0.014449-0 CrossRefGoogle Scholar
  28. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:13.  https://doi.org/10.1186/1746-1448-4-2 CrossRefGoogle Scholar
  29. Oren A (2015) Halophilic microbial communities and their environments. Curr Opin Biotechnol 33:119–124.  https://doi.org/10.1016/j.copbio.2015.02.005 CrossRefGoogle Scholar
  30. Pagaling E, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2012) Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles 16:607–618.  https://doi.org/10.1007/s00792-012-0460-1 CrossRefGoogle Scholar
  31. Pandit A, Joshi MN, Bhargava P, Shaikh I, Ayachit GN, Raj SR, Saxena AK, Bagatharia SB (2015) A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the world. Extremophiles:1–15.  https://doi.org/10.1007/s00792-015-0772-z
  32. Pupin B, Nahas E (2014) Microbial populations and activities of mangrove, Restinga and Atlantic forest soils from Cardoso Island, Brazil. J Appl Microbiol 116:851–864.  https://doi.org/10.1111/jam.12413 CrossRefGoogle Scholar
  33. Qi X, Wang E, Xing M, Zhao W, Chen X (2012) Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J Microbiol Biotechnol 28:2257–2265.  https://doi.org/10.1007/s11274-012-1033-2 CrossRefGoogle Scholar
  34. Qiu XX, Zhao M-L, Han D, Zhang W-J, Cui H-L (2013) Haloplanus salinus sp. nov., an extremely halophilic archaeon from a Chinese marine solar saltern. Arch Microbiol 195:799–803.  https://doi.org/10.1007/s00203-013-0929-z CrossRefGoogle Scholar
  35. Roh SW, Kim K-H, Nam Y-D, Chang H-W, Park E-J, Bae J-W (2010) Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J 4:1–16.  https://doi.org/10.1038/ismej.2009.83 CrossRefGoogle Scholar
  36. Savage KN, Krumholz LR, Oren A, Elshahed MS (2007) Haladaptatus paucihalophilus gen. Nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57:19–24.  https://doi.org/10.1099/ijs.0.64464-0 CrossRefGoogle Scholar
  37. Savage KN, Krumholz LR, Oren A, Elshahed MS (2008) Halosarcina pallida gen. Nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860.  https://doi.org/10.1099/ijs.0.65398-0 CrossRefGoogle Scholar
  38. Saxena AK, Kaushik R, Yadav AN, Gulati S, Sharma D (2015) Role of Archaea in sustenance of plants in extreme saline environments. In: Proceeding of 56th Annual Conference of Association of Microbiologists of India and International Symposium on “Emerging Discoveries in Microbiology”. doi:  https://doi.org/10.13140/RG.2.1.2073.9925
  39. Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248.  https://doi.org/10.5958/0976-1926.2016.00036.X CrossRefGoogle Scholar
  40. Shimane Y et al (2010) Natronoarchaeum mannanilyticum gen. Nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. Int J Syst Evol Microbiol 60:2529–2534.  https://doi.org/10.1099/ijs.0.016600-0 CrossRefGoogle Scholar
  41. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599.  https://doi.org/10.1093/molbev/msm092 CrossRefGoogle Scholar
  42. Thomas C, Ionescu D, Ariztegui D, Team DS (2014) Archaeal populations in two distinct sedimentary facies of the subsurface of the Dead Sea. Mar Gen 17:53–62.  https://doi.org/10.1016/j.margen.2014.09.001 CrossRefGoogle Scholar
  43. Tripathi BM et al (2015) Soil pH and biome are both key determinants of soil archaeal community structure. Soil Biol Biochem 17:53–62.  https://doi.org/10.1016/j.soilbio.2015.05.004 Google Scholar
  44. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58.  https://doi.org/10.1002/jobm.201500459 CrossRefGoogle Scholar
  45. White RH (1987) Indole-3-acetic acid and 2-(indol-3-ylmethyl) indol-3-yl acetic acid in the thermophilic archaebacterium Sulfolobus acidocaldarius. J Bacteriol 169:5859–5860. Available at: https://www.ncbi.nlm.nih.gov/pubmed/3119573. Accessed 25 April 2019
  46. Xu X-W, Wu Y-H, Wang C-S, Oren A, Zhou P-J, Wu M (2007) Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:717–720.  https://doi.org/10.1099/ijs.0.64573-0 CrossRefGoogle Scholar
  47. Xu Y, Zhou P, Tian X (1999) Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49:261–266. Availble at: https://www.ncbi.nlm.nih.gov/pubmed/10028271. Accessed 25 April 2019
  48. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2015a) Cold active hydrolytic enzymes production by psychrotrophic bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 55:1–14.  https://doi.org/10.1002/jobm.201500230 CrossRefGoogle Scholar
  49. Yadav AN, Sachan SG, Verma P, Saxena AK (2015b) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693.  https://doi.org/10.1016/j.jbiosc.2014.11.006 CrossRefGoogle Scholar
  50. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015c) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108.  https://doi.org/10.1007/s11274-014-1768-z CrossRefGoogle Scholar
  51. Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Saxena AK (2015d) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293.  https://doi.org/10.1038/srep12293 CrossRefGoogle Scholar
  52. Yadav AN, Verma P, Kaushik R, Dhaliwal HS, Saxena AK (2017) Archaea endowed with plant growth promoting attributes. EC Microbiol 8:294–298Google Scholar
  53. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Saxena AK (2015e) Diversity and phylogenetic profiling of niche-specific bacilli from extreme environments of India. Ann Microbiol 65:611–629.  https://doi.org/10.1007/s13213-014-0897-9 CrossRefGoogle Scholar
  54. Yin S, Wang Z, Xu J-Q, Xu W-M, Yuan P-P, Cui H-L (2015) Halorubrum rutilum sp. nov. isolated from a marine solar saltern. Arch Microbiol 197:1159–1164.  https://doi.org/10.1007/s00203-015-1159-3 CrossRefGoogle Scholar
  55. Youssef NH, Ashlock-Savage KN, Elshahed MS (2012) Phylogenetic diversities and community structure of members of the extremely halophilic archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol 78:1332–1344.  https://doi.org/10.1128/AEM.07420-11 CrossRefGoogle Scholar
  56. Zhang W-Y, Huo Y-Y, Zhang X-Q, Zhu X-F, Wu M (2013) Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 63:4380–4385.  https://doi.org/10.1099/ijs.0.050864-0 CrossRefGoogle Scholar

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Ajar Nath Yadav
    • 1
    • 2
  • Sneha Gulati
    • 2
  • Divya Sharma
    • 2
  • Ram Nageena Singh
    • 2
  • Mahendra Vikram Singh Rajawat
    • 2
  • Rajesh Kumar
    • 2
  • Rinku Dey
    • 3
  • Kamal Krishna Pal
    • 3
  • Rajeev Kaushik
    • 2
  • Anil Kumar Saxena
    • 4
    Email author
  1. 1.Department of Biotechnology, Akal College of AgricultureEternal UniversityBaru SahibIndia
  2. 2.Division of MicrobiologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  3. 3.ICAR-Directorate of Groundnut ResearchJunagadhIndia
  4. 4.ICAR-National Bureau of Agriculturally Important MicroorganismsMauIndia

Personalised recommendations