Advertisement

Biologia

, Volume 74, Issue 5, pp 563–571 | Cite as

A facile extraction of keratin from pig hair and its properties

  • Quan-Fang Li
  • Yufeng He
  • Rong-Min WangEmail author
Original Article
  • 23 Downloads

Abstract

The pig hair keratin (PHK) has been successfully extracted by a facile method of reduction, and the optimal yield of pure keratin is 61%. FT-IR and CD spectra indicate that the secondary structure of the extracted PHK is mostly β-sheet and random coil. UV-Vis spectra show that characteristic absorption peaks at the vicinities of 208 nm and 275 nm were assigned to both benzene ring and auxochrome substituents such as -OH and -NH2. The results of elemental analysis and amino acid analysis show that hydrophobic and hydrophilic amino acids in the hydrolyzed PHK totaled about 53.66 mol% and 46.34 mol%. Based on the results of SDS-PAGE and MALDI-TOF MS, the molecular weight of the as-obtained PHK is 10.86 kDa with low dispersion. TG analysis declares that the decomposition temperature of PHK is 280 °C. The MTT-cytotoxicity test declares that the extracted PHK has no toxic and negative effects on human skin basically. It is promising that this biocompatible keratin can be readily used in various realms of biomedicine and biotechnology.

Keywords

Keratin Extraction Pig hair Cytotoxicity Secondary structure 

Abbreviations

PHK

pig hair keratin

PH

pig hair

SDS

sodium dodecyl sulfate

FT-IR

Fourier transform infrared

CD

circular dichroism

UV-Vis

Ultraviolet-visible

SDS-PAGE

sodium dodecyl sulfate polyacrylamide gel electrophoresis

MALDI-TOF MS

matrix-assisted laser desorption ionization time-of-flight mass spectrometer

TG

thermal gravimetric

TGA

thermal gravimetric analysis

MTT

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

BSA

bovine serum albumin

HCl

hydrochloric acid

-SH

sulfhydryl

-S-S-

disulfide bond

-CONH-

peptide bond

FK

feather keratin

Notes

Acknowledgments

The authors thank Dr. Shaoxiang Xiong, Professor of Institute of Chemistry, Chinese Academy of Sciences (Beijing China), for MALDI-TOF MS measurement. We also thank Professor Ming Lin of Health Science Center in Peking University for helping in Amino Acid Analysis. The project was supported by the National Natural Science Foundation of China (21865030; 21364012) and Gansu International Sci & Techn Coop-Base for Water-retention Functional Materials.

Compliance with ethical standards

Conflict of interest

In this manuscript, all authors have no actual or potential conflict of interest including financial, personal or other relationships with journal editors. This submitted work has not been inappropriately influenced.

Submission declaration

This manuscript and its contents have not previously been published nor are under active consideration for publication with any journal or publisher except with Biologia.

Supplementary material

11756_2019_210_MOESM1_ESM.doc (219 kb)
ESM 1 (DOC 219 kb)

References

  1. Akiba H, Ikeuchi E, Ganbat J, Fujikawa H, Arai-Kusano O, Iwanari H, Nakakido M, Hamakubo T, Shimomura Y, Tsumoto K (2018) Structural behavior of keratin-associated protein 8.1 in human hair as revealed by a monoclonal antibody. J Struct Biol 204:207–214.  https://doi.org/10.1016/j.jsb.2018.08.011 CrossRefGoogle Scholar
  2. Alemdar A, Iridag Y, Kazanci M (2005) Flow behavior of regenerated wool-keratin proteins in different mediums. Int J Biol Macromol 35:151–153.  https://doi.org/10.1016/j.ijbiomac.2005.01.010 CrossRefGoogle Scholar
  3. Aluigi A, Sotgiu G, Torreggiani A, Guerrini A, Orlandi VT, Corticelli F, Varchi G (2015) Methylene blue doped films of wool keratin with antimicrobial photodynamic activity. ACS Appl Mater Interfaces 7:17416–17424.  https://doi.org/10.1021/acsami.5b04699 CrossRefGoogle Scholar
  4. Ayutthaya SIN, Tanpichai S, Wootthikanokkhan J (2015) Keratin extracted from chicken feather waste: extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns. J Polym Environ 23:506–516.  https://doi.org/10.1007/s10924-015-0725-8 CrossRefGoogle Scholar
  5. Azmi NA, Idris A, Yusof NSM (2018) Ultrasonic technology for value added products from feather keratin. Ultrason Sonochem 47:99–107.  https://doi.org/10.1016/j.ultsonch.2018.04.016 CrossRefGoogle Scholar
  6. Cassoni AC, Freixo R, Pintado AIE, Amorim M, Pereira CD, Madureira AR, Pintado MME (2018) A novel eco-friendly method to extract keratin from hair. ACS Sustain Chem Eng 6:12268–12274.  https://doi.org/10.1021/acssuschemeng.8b02680 CrossRefGoogle Scholar
  7. Chen W-H, Lee S-C, Sabu S, Fang H-C, Chung S-C, Han C-C, Chang H-C (2006) Solid-phase extraction and elution on diamond (SPEED): a fast and general platform for proteome analysis with mass spectrometry. Anal Chem 78:4228–4234.  https://doi.org/10.1021/ac052085y CrossRefGoogle Scholar
  8. Esparza Y, Ullah A, Boluk Y, Wu J (2017) Preparation and characterization of thermally crosslinked poly(vinyl alcohol)/feather keratin nanofiber scaffolds. Mater Desig 133:1–9.  https://doi.org/10.1016/j.matdes.2017.07.052 CrossRefGoogle Scholar
  9. Ferroni C, Sotgiu G, Sagnella A, Varchi G, Guerrini A, Giuri D, Polo E, Orlandi VT, Marras E, Gariboldi M, Monti E, Aluigi A (2016) Wool keratin 3D scaffolds with light-triggered antimicrobial activity. Biomacromolecule 17:2882–2890.  https://doi.org/10.1021/acs.biomac.6b00697 CrossRefGoogle Scholar
  10. Fu K, Griebenow K, Hsieh L, Klibanov AM, Langera R (1999) FTIR characterization of the secondary structure of proteins encapsu-lated within PLGA microspheres. J Control Release 58:357–366.  https://doi.org/10.1016/S0168-3659(98)00192-8 CrossRefGoogle Scholar
  11. Ha S-W, Tonelli AE, Hudson SM (2005) Structural studies of bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecule 6:1722–1731.  https://doi.org/10.1021/bm050010y CrossRefGoogle Scholar
  12. Hémonnot CYJ, Reinhardt J, Saldanha O, Patommel J, Graceffa R, Weinhausen B, Burghammer M, Schroer CG, Köster S (2016) X-rays reveal the internal structure of keratin bundles in whole cells. ACS Nano 10:3553–3561.  https://doi.org/10.1021/acsnano.5b07871 CrossRefGoogle Scholar
  13. Huggins ML (1980) Structure of β-keratin. Biomacromolecule 13:465–470.  https://doi.org/10.1021/ma60075a002 CrossRefGoogle Scholar
  14. Idris A, Vijayaraghavan R, Patti AF, MacFarlane DR (2014) Distillable protic ionic liquids for keratin dissolution and recovery. ACS Sustain Chem Eng 2:1888–1894.  https://doi.org/10.1021/sc500229a CrossRefGoogle Scholar
  15. Ji Y, Chen J, Lv J, Li Z, Xing L, Ding S (2014) Extraction of keratin with ionic liquids from poultry feather. Sep Purif Technol 132:577–583.  https://doi.org/10.1016/j.seppur.2014.05.049 CrossRefGoogle Scholar
  16. Jiang Z, Yuan J, Wang P, Fan X, Xu J, Wang Q, Zhang L (2018) Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea. Int J Biol Macromol 119:423–430.  https://doi.org/10.1016/j.ijbiomac.2018.07.161 CrossRefGoogle Scholar
  17. Jin X, Wang Y, Yuan J, Shen J (2016) Extraction, characterization, and NO release potential of keratin from human hair. Mater Lett 175:188–190.  https://doi.org/10.1016/j.matlet.2016.04.036 CrossRefGoogle Scholar
  18. Kim JW, Kim MJ, Ki CS, Kim HJ, Park YH (2017) Fabrication of bi-layer scaffold of keratin nanofiber and gelatin-methacrylate hydrogel: implications for skin graft. Int J Bio Macromol 105:541–548.  https://doi.org/10.1016/j.ijbiomac.2017.07.067 CrossRefGoogle Scholar
  19. Kippenberger S, Kleemann J, Meissner M, Steinhorst K, Müller J, Zouboulis CC, Kaufmann R, Zöller N (2018) Activation of PKB/Akt and p44/42 by mechanical stretch utilizes desmosomal structures and the keratin filament. J Dermatol Sci 89:241–247.  https://doi.org/10.1016/j.jdermsci.2017.11.011 CrossRefGoogle Scholar
  20. Li H, Oh JS, Sinha TK, Kim JK (2019) Synergistic influence of keratin and TPU: an approach towards bioinspired artificial skin. Mater Chem Phys 223:196–201.  https://doi.org/10.1016/j.matchemphys.2018.10.050 CrossRefGoogle Scholar
  21. Ma B, Qiao X, Hou X, Yang Y (2016) Pure keratin membrane and fibers from chicken feather. Int J Biol Macromol 89:614–621.  https://doi.org/10.1016/j.ijbiomac.2016.04.039 CrossRefGoogle Scholar
  22. Medeiros IP, Rozental S, Costa AS, Macrae A, Hagler AN, Ribeiro JRA, Vermelho AB (2016) Biodegradation of keratin by trichosporum loubieri RC-S6 isolated from tannery/leather waste. Int Biodeter Biodegr 115:199–204.  https://doi.org/10.1016/j.ibiod.2016.08.006 CrossRefGoogle Scholar
  23. Mori H, Hara M (2018) Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel. Mat Sci Eng C 91:19–25.  https://doi.org/10.1016/j.msec.2018.05.021 CrossRefGoogle Scholar
  24. Posati T, Giuri D, Nocchetti M, Sagnella A, Gariboldi M, Ferroni C, Sotgiu G, Varchi G, Zamboni R, Aluigi A (2018) Keratin-hydrotalcites hybrid films for drug delivery applications. Eur Polym J 105:177–185.  https://doi.org/10.1016/j.eurpolymj.2018.05.030 CrossRefGoogle Scholar
  25. Prachi K, Madhan B, Ganesh S (2016) Transient structures of keratins from hoof and horn influence their self association and supramolecular assemblies. Int J Bio Macromol 93:172–178.  https://doi.org/10.1016/j.ijbiomac.2016.08.077 CrossRefGoogle Scholar
  26. Ramakrishnan N, Sharma S, Gupta A, Alashwal BY (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol 111:352–358.  https://doi.org/10.1016/j.ijbiomac.2018.01.037 CrossRefGoogle Scholar
  27. Ramamurthy G, Ramalingam B, Katheem MF, Sastry TP, Inbasekaran S, Thanveer V, Jayaramachandran S, Das SK, Mandal AB (2015) Total elimination of polluting chrome shavings, chrome, and dye exhaust liquors of tannery by a method using keratin hydrolysate. ACS Sustain Chem Eng 3:1348–1358.  https://doi.org/10.1021/acsami.5b00854 CrossRefGoogle Scholar
  28. Schrooyen PMM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J (2000) Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J Agric Food Chem 48:4326–4334.  https://doi.org/10.1021/jf9913155 CrossRefGoogle Scholar
  29. Senoz E, Wool RP (2010) Microporous carbon-nitrogen fibers from keratin fibers by pyrolysis. J Appl Polym Sci 118:1752–1765.  https://doi.org/10.1002/app.32397 Google Scholar
  30. Shanmugasundaram OL, Ahmed KSZ, Sujatha K, Ponnmurugan P, Srivastava A, Ramesh R, Sukumar R, Elanithi K (2018) Fabrication and characterization of chicken feather keratin/polysaccharides blended polymer coated nonwoven dressing materials for wound healing applications. Mat Sci Eng C 92:26–33.  https://doi.org/10.1016/j.msec.2018.06.020 CrossRefGoogle Scholar
  31. Sharma S, Gupta A (2016) Sustainable management of keratin waste biomass: applications and future perspectives. Braz Arch Biol Technol 59:e16150684.  https://doi.org/10.1590/1678-4324-2016150684 Google Scholar
  32. Sharma S, Gupta A, Chik SMST, Kee CG, Mistry BM, Kim DH, Sharma G (2017) Characterization of keratin microparticles from feather biomass with potent antioxidant and anticancer activities. Int J Biol Macromol 104:189–196.  https://doi.org/10.1016/j.ijbiomac.2017.06.015 CrossRefGoogle Scholar
  33. Sharma S, Gupta A, Kumar A, Kee CG, Kamyab H, Saufi SM (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol Envir 20:2157–2167.  https://doi.org/10.1007/s10098-018-1498-2 CrossRefGoogle Scholar
  34. Singh R, Lin Y-T, Chuang W-L, Ko F-H (2017) A new biodegradable gate dielectric material based on keratin protein for organic thin film transistors. Org Electron 44:198–209.  https://doi.org/10.1016/j.orgel.2017.02.024 CrossRefGoogle Scholar
  35. Sionkowska A, Skopinska-Wiśniewska J, Kozłowska J, Płanecka A, Kurzawa M (2011) Photochemical behaviour of hydrolysed keratin. Int J Cosmetic Sci 33:503–508.  https://doi.org/10.1111/j.1468-2494.2011.00662.x CrossRefGoogle Scholar
  36. Tran CD, Mututuvari TM (2016) Cellulose, chitosan and keratin composite materials: facile and recyclable synthesis, conformation and properties. ACS Sustain Chem Eng 4:1850–1861.  https://doi.org/10.1021/acssuschemeng.6b00084 CrossRefGoogle Scholar
  37. Tran CD, Prosenc F, Franko M, Benzi G (2016) One-pot synthesis of biocompatible silver nanoparticle composites from cellulose and keratin: characterization and antimicrobial activity. ACS Appl Mater Interfaces 8:34791–34801.  https://doi.org/10.1021/acsami.6b14347 CrossRefGoogle Scholar
  38. Ullah A, Wu J (2013) Feather fiber-based thermoplastics: effects of different plasticizers on material properties. Macromol Mater Eng 298:153–162.  https://doi.org/10.1002/mame.201200010 CrossRefGoogle Scholar
  39. Villanueva ME, Cuestas ML, Pérez CJ, Orto VCD, Copello GJ (2019) Smart release of antimicrobial ZnO nanoplates from a pH-responsive keratin hydrogel. J Colloid Interf Sci 536:372–380.  https://doi.org/10.1016/j.jcis.2018.10.067 CrossRefGoogle Scholar
  40. Wang J, Hao S, Luo T, Yang Q, Wang B (2016) Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. Mat Sci Eng C 68:768–773.  https://doi.org/10.1016/j.msec.2016.07.035 CrossRefGoogle Scholar
  41. Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B (2017a) Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloid Surface B 149:341–350.  https://doi.org/10.1016/j.colsurfb.2016.10.038 CrossRefGoogle Scholar
  42. Wang J, Qian W, He Y, Xiong Y, Song P, Wang R-M (2017b) Reutilization of discarded biomass for preparing functional polymer materials. Waste Manag 65:11–21  https://doi.org/10.1016/j.wasman.2017.04.025 CrossRefGoogle Scholar
  43. Wu T-F, Hong J-D (2015) Dopamine-melanin nanofilms for biomimetic structural coloration. Biomacromolecule 16:660–666.  https://doi.org/10.1021/bm501773c CrossRefGoogle Scholar
  44. Xu H, Yang Y (2014) Controlled de-cross-linking and disentanglement of feather keratin for fiber preparation via a novel process. ACS Sustain Chem Eng 2:1404–1410.  https://doi.org/10.1021/sc400461d CrossRefGoogle Scholar
  45. Xu H, Cai S, Xu L, Yang Y (2014) Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30:8461–8470.  https://doi.org/10.1021/la500768b CrossRefGoogle Scholar
  46. Xu X, Wu J, Meng Z, Li Y, Huang Q, Qi Y, Liu Y, Zhan D, Liu XY (2018) Enhanced exfoliation of biocompatible MoS2 nanosheets by wool keratin. ACS Appl Nano Mater 1:5460–5469.  https://doi.org/10.1021/acsanm.8b00788 CrossRefGoogle Scholar
  47. Yin J, Rastogi S, Terry AE, Popescu C (2007) Self-organization of oligopeptides obtained on dissolution of feather keratins in superheated water. Biomacromolecule 8:800–806.  https://doi.org/10.1021/bm060811g CrossRefGoogle Scholar
  48. Yin X-C, Li F-Y, He Y-F, Wang Y, Wang R-M (2013) Study on effective extraction of chicken feather keratins and their films for controlling drug release. Biomater Sci 1:528–536.  https://doi.org/10.1039/c3bm00158j CrossRefGoogle Scholar
  49. Zheng S, Nie Y, Zhang S, Zhang X, Wang L (2015) Highly efficient dissolution of wool keratin by dimethylphosphate ionic liquids. ACS Sustain Chem Eng 3:2925–2932.  https://doi.org/10.1021/acssuschemeng.5b00895 CrossRefGoogle Scholar

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Key Laboratory of Evidence Science of Gansu ProvinceGansu Institute of Political Science and LawLanzhouChina
  2. 2.Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Institute of PolymerNorthwest Normal UniversityLanzhouChina

Personalised recommendations