Advertisement

Biologia

pp 1–10 | Cite as

Elytrigia repens co-occurs with glycophytes rather than characteristic halophytes in low-growing salt meadows on the southern Baltic Sea coast

  • Ricarda PätschEmail author
  • Ines Bruchmann
  • Jenny Schellenberg
  • Anke Meisert
  • Erwin Bergmeier
Original Article

Abstract

Baltic salt meadows of the supralittoral are recognizable by a low vegetation structure of perennial plants, distinct zonation, and the presence of characteristic species of high ecological value. This semi-natural, grazing-dependent vegetation is declining in overall distribution and habitat quality. Abiotic and biotic habitat changes as well as the loss of characteristic species and a simultaneous increase of Elytrigia repens are particularly concerning. We hypothesize that, if E. repens increases due to abandonment or other causes, characteristic salt-meadow species will be affected adversely. To investigate the floristic changes and salt meadow species loss over a wide area, we used a dataset of salt meadow plots from along the southern Baltic Sea coast, partitioned by different cover ranges of E. repens. Between these groups, we compared the abundance and frequency of characteristic salt meadow species. We additionally tested (Mann-Whitney-U test) relevant structural factors, plot-based indicator values and strategy types. E. repens indicated low incidence of characteristic salt-meadow species. Soil moisture, salinity and light availability were lower where E. repens occurred; mean vegetation height was increased. Five species co-occurred with Elytrigia repens (Achillea millefolium, Holcus lanatus, Poa pratensis, Schedonorus arundinaceus, Trifolium repens), showing simultaneously a low relative abundance in the remaining dataset. We discuss our findings in terms of frequently observed vegetation changes in the light of salt meadow abandonment. In conclusion, we draw up an easy-to-use method for monitoring salt-meadow medium-term dynamics for applied nature conservation purposes.

Keywords

Competitive strategy Couch grass Grass encroachment Salt-meadow management Nature conservation 

Abbreviations

CSMS

Characteristic salt-meadow species

NMDS

Non-metric multidimensional scaling

Notes

Acknowledgments

Support by Agnieszka Piernik in selecting suitable research areas in Poland and for obtaining fieldwork permissions is gratefully acknowledged. Thorsten Joseph provided irreplaceable help during field work, Inga Schmiedel gave constructive advice and Hardy Küster assisted in proofreading the manuscript.

Compliance with ethical standards

Conflict of interest

We (all authors) declare, that we have no conflict of interest.

Supplementary material

11756_2019_195_MOESM1_ESM.pdf (180 kb)
ESM 1 (PDF 180 kb)

References

  1. Amiaud B, Touzard B, Bonis A, Bouzillé JB (2008) After grazing exclusion, is there any modification of strategy for two guerrilla species: Elymus repens (L.) Gould and Agrostis stolonifera (L.)? Plant Ecol 197(1):107–117.  https://doi.org/10.1007/s11258-007-9364-z CrossRefGoogle Scholar
  2. Andresen H, Bakker JP, Brongers M, Heydemann B, Irmler U (1990) Long-term changes of salt marsh communities by cattle grazing. Vegetatio 89(2):137–148.  https://doi.org/10.1007/BF00032166 CrossRefGoogle Scholar
  3. Bakker JP (1987) Pflegeformen und Änderungen in der Salzwiesenvegetation. In: Kempf NJ, Lamp J, Prokosch P (eds) Salzwiesen: Geformt von Küstenschutz, Landwirtschaft oder Natur? Tagungsbericht 1 der Umweltstiftung WWF-Deutschland, 1st edn. Husum Druck- und Verlagsgesellschaft, Husum, pp 215–241Google Scholar
  4. Bakker JP, de Vries Y (1992) Germination and early establishment of lower salt-marsh species in grazed and mown salt marsh. J Veg Sci 3(2):247–252.  https://doi.org/10.2307/3235686 CrossRefGoogle Scholar
  5. Bakker JP, Ruyter JC (1981) Effects of five years of grazing on a salt-marsh vegetation. Vegetatio 44(2):81–100.  https://doi.org/10.1007/BF00133005 CrossRefGoogle Scholar
  6. Bakker JP, Dijkstra M, Russchen PT (1985) Dispersal, germination and early establishment of halophytes and glycophytes on a grazed and abandoned salt-marsh gradient. New Phytol 101(2):291–308.  https://doi.org/10.1111/j.1469-8137.1985.tb02836.x CrossRefGoogle Scholar
  7. Bakker JP, de Leeuw J, Dijkema KS, Leendertse PC, Prins HHT, Rozema J (1993) Salt marshes along the coast of the Netherlands. Hydrobiologia 265:73–95.  https://doi.org/10.1007/BF00007263 CrossRefGoogle Scholar
  8. Berg C, Dengler J, Abdank A, Isermann M (2004) Die Pflanzengesellschaften Mecklenburg-Vorpommerns und ihre Gefährdung. Weissdorn, JenaGoogle Scholar
  9. Bosiacka B, Stachowiak M (2007) Źródliskowe solniska z Salicornia europaea (Chenopodiaceae) w okolicach Kołobrzega. Fragm Flor et Geobot Polonica 14(2):337–345Google Scholar
  10. Bosiacka B, Stępień E (2001) Nowe stanowiska roślinności halofilnej w Kołobrzegu. Część II Bad Fizjogr Pol Zach ser B 50:117–129Google Scholar
  11. Bosiacka B, Podlasiński M, Pieńkowski P (2011) Salt marshes determined by ascending brine in northern Poland: land-use changes and vegetation-environment relations. Phytocoenologia 41(3):201–213.  https://doi.org/10.1127/0340-269X/2011/0041-0463 CrossRefGoogle Scholar
  12. Bosiacka B, Kull T, Więcław H, Marciniuk P, Podlasiński M (2016) Habitat requirements of marsh dandelions (Taraxacum) in Polish and Estonian coastal grasslands. Pol J Ecol 64(2):213–230.  https://doi.org/10.3161/15052249PJE2016.64.2.006 CrossRefGoogle Scholar
  13. Burnside NG, Joyce CB, Puurmann E, Scott DM (2007) Use of vegetation classification and plant indicators to assess grazing abandonment in Estonian coastal wetlands. J Veg Sci 18(5):645–654.  https://doi.org/10.1111/j.1654-1103.2007.tb02578.x CrossRefGoogle Scholar
  14. Christiansen W (1937) Beobachtungen an Dauerquadraten auf der Lotseninsel Schleimünde. Schriften des Naturwissenschaftlichen Vereins Schleswig-Holstein 22(1):69–88Google Scholar
  15. Chytrý M, Hennekens SM, Jiménez-Alfaro B, Knollová I, Dengler J et al (2016) European vegetation archive (EVA). An integrated database of European vegetation plots. Appl Veg Sci 19(1):173–180.  https://doi.org/10.1111/avsc.12191 CrossRefGoogle Scholar
  16. Ćwikliński E (1977) Słonawy źródliskowe na Wyspie Chrząszczewskiej w woj. Szczecińskim Fragm Flor et Geobot 23(1):57–68Google Scholar
  17. Dahlbeck N (1945) Strandwiesen am südöstlichen Öresund. Acta Phytogeographica Suecica 18:1–168Google Scholar
  18. Dierschke H (2012) Molinio-Arrhenatheretea (E1). Kulturgrasland und verwandte Vegetationstypen. Teil 3: Polygono-Potentilletalia anserinae. Kriech- und Flutrasen. Synopsis der Pflanzengesellschaften Deutschlands 11:1–104Google Scholar
  19. Dierßen K, Dierßen B (1996) Vegetation Nordeuropas. Ulmer, StuttgartGoogle Scholar
  20. Dijkema KS (1990) Salt and brackish marshes around the Baltic Sea and adjacent parts of the North Sea: their vegetation and management. Biol Conserv 51(3):191–209CrossRefGoogle Scholar
  21. Dítě D, jun EP, Šuvada R, Píš V, Melečková Z (2015) The phytosociology and ecology of saline vegetation with Scorzonera parviflora across the Pannonian-Western Balkan gradient. Phytocoenologia 45(1):33–47.  https://doi.org/10.1127/phyto/2015/0007 CrossRefGoogle Scholar
  22. Dítětová Z, Dítě D, jun EP, Galvánek D (2016) The impact of grazing absence in inland saline vegetation – a case study from Slovakia. Biologia 71(9):980–988.  https://doi.org/10.1515/biolog-2016-0125 Google Scholar
  23. Doody JP (2008) Management of Natura 2000 habitats. 1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae). European Commission 2(24):1–27Google Scholar
  24. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Ulmer, StuttgartGoogle Scholar
  25. Ellenberg H, Weber H, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa. 3rd edn. Scripta Geobotanica 18:1–262Google Scholar
  26. ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, RedlandsGoogle Scholar
  27. Esselink P, Zijlstra W, Dijkema KS, van Diggelen R (2000) The effects of decreased management on plant-species distribution patterns in a salt marsh nature reserve in the Wadden Sea. Biol Conserv 93(1):61–76.  https://doi.org/10.1016/S0006-3207(99)00095-6 CrossRefGoogle Scholar
  28. Euro+Med (2006-2018) Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed/. Accessed 05 May 2018
  29. Fukarek F (1961) Die Vegetation des Darß und ihre Geschichte. Fischer. In: JenaGoogle Scholar
  30. Fukarek F (1969) Ein Beitrag zur potentiellen natürlichen Vegetation von Mecklenburg. Mitt Flor-soz Arbeitsgem 14:231–237Google Scholar
  31. Goral F, Schellenberg J (2017) goeveg: functions for community data and ordinations. R package version 0.3.3. https://CRAN.R-project.org/package=goeveg. Accessed 17 July 2018
  32. Härdtle W (1984) Vegetationskundliche Untersuchungen in Salzwiesen der ostholsteinischen Ostseeküste. Mitt Arbeitsgem Geobot Schleswig-Holstein Hamb 34:1–142Google Scholar
  33. HELCOM (2008) Map and Data Service, BSR INTERREG IIIB BALANCE project, NERI, Denmark: Modelled bottom salinity. http://maps.helcom.fi/website/mapservice/. Accessed 03 June 2018
  34. Hulisz P, Piernik A, Mantilla-Contreras J, Elvisto T (2016) Main driving factors for seacoast vegetation in the Southern and Eastern Baltic. Wetlands 36(5):909–919.  https://doi.org/10.1007/s13157-016-0803-2 CrossRefGoogle Scholar
  35. Jansen F, Ewald J, Jandt U (2015) Vegetweb 2.0 – Neuauflage eines Vegetationsdatenportals für Deutschland. Vegetweb 2.0 – remaking the national vegetation dataportal for Germany. Tuexenia 35:309–319Google Scholar
  36. Janssen JAM, Rodwell JS, García Criado M, Gubbay S, Haynes T et al (2016) European Red list of Habitats. Part 2. Terrestrial and freshwater habitats. European Union, LuxembourgGoogle Scholar
  37. Jasnowski M (1962) Budowa i roślinność torfowisk Pomorza Szczecińskiego. Soc Sc Stetin. Wydz Nauk Przyr Roln 10:1–339Google Scholar
  38. Jeschke L (1987) Vegetationsdynamik des Salzgraslandes im Bereich der Ostseeküste der DDR unter dem Einfluß des Menschen. Hercynia 24:321–328Google Scholar
  39. Jutila H (1999) Effect of grazing on the vegetation of shore meadows along the Bothnian Sea, Finland. Plant Ecol 144:77–88CrossRefGoogle Scholar
  40. Kącki Z, Śliwiński M (2012) The polish vegetation database: structure, resources and development. Acta Soc Bot Pol 81(2):75–79.  https://doi.org/10.5586/asbp.2012.014 CrossRefGoogle Scholar
  41. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data.  https://doi.org/10.1038/sdata.2017.122
  42. Kauppi M (1967) Über den Einfluss der Beweidung auf die Vegetation der Uferwiesen an der Bucht Liminganlahti im Nordteil des Bottnischen Meerbusens. Aquil Ser Bot 6:347–369Google Scholar
  43. Kiehl K (1997) Vegetationsmuster in Vorlandsalzwiesen in Abhängigkeit von Beweidung und abiotischen Standortfaktoren. Mitt Arbeitsgem Geobot Schleswig-Holstein Hamb 52:1–142Google Scholar
  44. Klotz S, Kühn I, Durka W (2002) BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn-Bad GodesbergGoogle Scholar
  45. Krisch H (1981) Agropyron x obtusiusculum Lange als Neophyt am Greifswalder Bodden. Gleditschia 8:101–115Google Scholar
  46. Krisch H (2007) Kommentare zur Neubearbeitung der Exkursionsflora von Deutschland, Band 4 (Kritischer Band): 6. Zur Taxonomie und Nomenklatur einiger Elytrigia-Sippen. Schlechtendalia 16:9–17Google Scholar
  47. Machatzki B (1994) Floristisch- vegetationskundliche Untersuchung von ausgewählten Flächen auf der Insel Ummanz (Westrügen), ihrer Nebeninseln sowie der Insel Liebitz. NPA, Mecklenburg-VorpommernGoogle Scholar
  48. Melečková Z, Dítě D, Eliáš P jun PV, Galvánek D (2014) Succession of saline vegetation in Slovakia after a large-scale disturbance. Ann Bot Fenn 51(5):285–296.  https://doi.org/10.5735/085.051.0504 CrossRefGoogle Scholar
  49. Mucina L, Bültmann H, Dierßen K, Theurillat JP, Raus T et al (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19(S1):3–264.  https://doi.org/10.1111/avsc.12257 CrossRefGoogle Scholar
  50. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P et al (2016) Vegan: Community Ecology Package: R package version 2.4-1. https://cran.r-project.org/web/packages/vegan/. Accessed 17 July 2018
  51. Piotrowska H (1974) Nadmorskie zespoły solniskowe w Polsce i problemy ich ochrony. Ochr Przyr 39:7–63Google Scholar
  52. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienn https://www.R-project.org/. Accessed 17 July 2018
  53. Rozema J, Leendertse P, Bakker JP, van Wijnen H (2000) Nitrogen and vegetation dynamics in European salt marshes. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Springer Netherlands, Dordrecht, pp 469–491Google Scholar
  54. Scherfose V (1987) Salz-Zeigerwerte von Gefässpflanzen der Salzmarschen, Tideröhrichte und Salzwassertümpel an der deutschen Nord- und Ostsee. In: Niedersächsisches Landesamt für Wasser und Abfall (ed) Forschungsstelle Küste: Jahresbericht 1987, vol 39, pp 31–82Google Scholar
  55. Scherfose V (1993) Zum Einfluss der Beweidung auf das Gefäßpflanzen-Artengefüge von Salz- und Brackmarschen. Z Ökologie u Naturschutz 2(4):201–211Google Scholar
  56. Schmeisky H (1974) Vegetationskundliche und ökologische Untersuchungen in Strandrasen des Graswarders vor Heiligenhafen/Ostsee. Dissertation, University of GöttingenGoogle Scholar
  57. Schmeisky H (1977a) Der Einfluss von Weidetieren auf Salzpflanzengesellschaften an der Ostsee. In: Tüxen R (ed) Vegetation und Fauna. Gantner Verlag K.-G., Vaduz, pp 481–498Google Scholar
  58. Schmeisky H (1977b) Sukzessionsuntersuchungen auf Salzrasen des Graswarders vor Heiligenhafen/Ostsee. Mitt Erg Stud Ökol Umwelts 2:103–114Google Scholar
  59. Timling I (2000) Elytrigia repens as an invasive species during salt marsh restoration at the Baltic Sea. Restoration and Reclamation Review 6:1–9Google Scholar
  60. Vestergaard P (1998) Vegetation ecology of coastal meadows in southeastern Denmark. Opera Bot 134:1–69Google Scholar
  61. Wanner A (2009) Management, biodiversity and restoration potential of salt grassland vegetation of the Baltic Sea: Analyses of a complex ecological gradient. Dissertation, University of HamburgGoogle Scholar
  62. Wanner A, Rudolphi H, Jensen K (2007) A method for classifying coastal marshes of the German Baltic Sea for the European water framework directive (WFD). Rostock Meeresbiolog Beitr 17:91–109Google Scholar
  63. Wickham H (2011) The Split-apply-combine strategy for data analysis. J Stat Softw http://www.jstatsoft.org/v40/i01/. Accessed 17 July 2018
  64. Wolfram C (1996) Die Vegetation des Bottsandes. Mitt Arbeitsgem Geobot Schleswig-Holstein Hamb 51:3–111Google Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Biology and ChemistryUniversity of HildesheimHildesheimGermany
  2. 2.Department of Vegetation and Phytodiversity AnalysisUniversity of GöttingenGöttingenGermany

Personalised recommendations