, Volume 74, Issue 4, pp 339–349 | Cite as

Growth dynamics of endemic Dracaena cinnabari Balf. f. of Socotra Island suggest essential elements for a conservation strategy

  • Petr MaděraEmail author
  • Hana Habrová
  • Martin Šenfeldr
  • Irena Kholová
  • Samuel Lvončík
  • Lenka Ehrenbergerová
  • Matěj Roth
  • Nadezhda Nadezhdina
  • Petr Němec
  • Jonathan Rosenthal
  • Jindřich Pavliš
Original Article


Dragon’s blood tree, a flagship endemic species of Socotra, is threatened with extinction due to lack of natural regeneration, likely because of goat herbivory and/or climatic factors. Loss of dragon’s blood tree would result in loss of other native flora, heightening the importance of formulating a conservation strategy for it. Although artificial afforestation might be used to offset the lack of natural regeneration, it would have to overcome the same threats faced by naturally occurring seedlings. Moreover, there is no published information on the growth dynamics of seedlings in plantations in situ on Socotra. To fill this information gap, we compared seedling growth (total plant height, leaves number, stem height, stem diameter) over an 8-year period after planting at three sites that differed in the degree to which goats were excluded and in whether they were watered regularly over the period. In addition to developing a new classification of the growth stages, which will enable better tracking of population dynamics, we found that continuous goat exclusion was necessary to prevent seedling mortality. Also, although seedling growth overall was slow, growth parameters of regularly irrigated seedlings ranged from 156% to 446% of those not regularly watered, suggesting that this treatment can speed seedlings’ escape from goat browsing. For the dragon’s blood tree and likely for other taxa within this group, extremely slow growth and long generation times suggest that conservation and restoration efforts will require a commitment to active management that will last decades, rather than a short-term approach.


Afforestation Browsing dragon’s blood tree Regeneration Semi-arid tropical zone Soqotra 



The afforestation activities were supported by the Czech Development Agency and by the Canadian International Development Agency. Authors thanks for financial support of research to projects TROPENVI (reg. No. CZ.1.07/2.2.00/07.0156) and LANDTEAM (reg. No. EE2.3.20.0004). Many thanks belong to Muhamad Al-Keabany family for their care about plantation. All activities couldn’t be realised without close cooperation with Environmental Protection Authority, Hadibo, Socotra.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adolt R, Pavliš J (2004) Age structure and growth of Dracaena cinnabari populations on Socotra. Trees - Structure and Function 18(1):43–53. CrossRefGoogle Scholar
  2. Adolt R, Habrová H, Maděra P (2012) Crown age estimation of a monocotyledonous tree species Dracaena cinnabari using logistic regression. Trees - Structure and Function 26(4):1287–1298. CrossRefGoogle Scholar
  3. Adolt R, Maděra P, Abraham J, Čupa P, Svátek M, Matula R, Šebesta J, Čermák M, Volařík D, Koutecký T, Rejžek M, Šenfeldr M, Veska J, Habrová H, Čermák Z, Němec P (2013) Field survey of Dracaena cinnabari populations in Firmihin, Socotra island: methodology and preliminary results. Journal of Landscape Ecology 6(3):7–34. CrossRefGoogle Scholar
  4. Almeida Pérez RS (2003a) Censo, distribución, habitat y estado de conservation de Dracaena tamaranae A.Marrero, R.S.González-Martín, Gran Canaria, Islas Canarias. Botanica Macarónesica 24:39–56Google Scholar
  5. Almeida Pérez RS (2003b) Sobre la presencia de Dracaena draco (L.) L. en Gran Canaria (Islas Canarias): aportación corológica, estado actual y significación biogeográfica. Bot. Macarónesica 24:17–38Google Scholar
  6. Attorre F, Francesconi F, Taleb N, Scholte P, Saed A, Alfo M, Bruno F (2007) Will dragonblood survive the next period of climate change? Current and future potential distribution of Dracaena cinnabari (Socotra, Yemen). Biol Conserv 138:430–439. CrossRefGoogle Scholar
  7. Aynekulu E, Aerts R, Moonen P, Denich M, Gebrehiwot K, Vagen TG, Mekuria W, Boehmer HJ (2012) Altitudinal variation and conservation priorities of vegetation along the great Rift Valley escarpment, northern Ethiopia. Biodivers Conserv 21:2691–2707. CrossRefGoogle Scholar
  8. Baty F, Delignette-Muller ML (2015) Tools for Nonlinear Regression Analysis. R package version 1.0–2. Accessed 25 October 2017
  9. Bramwell D (1990) Panbiogeography of the Canary Islands flora. In: proceedings of the international symposium on biogeographical aspects of insularity, Accademia Nazionale Dei Lincei. Roma, Italy, pp 157–166Google Scholar
  10. Brown G, Mies BA (2012) Vegetation Ecology of Socotra. Plant and Vegetation 7. Springers, Dordrecht, Heidelberg, New York, LondonGoogle Scholar
  11. Byström K (1960) Dracaena draco L. in the Cape Verde Islands. Acta Horti-Gotoburgensis 23:179–214Google Scholar
  12. Culek M (2013) Geological and morphological evolution of the Socotra archipelago (Yemen) from the biogeographical view. Journal of Landscape Ecology 6(3):84–108. CrossRefGoogle Scholar
  13. Culek M, Král K, Habrová H, Adolt R, Maděra P, Pavliš J (2006) Socotra's annual weather pattern. In: Cheung C, DeVantier L, Van Damme K (eds) Socotra - a natural history of the islands and their people. Odyssey books and guides, AirPhoto international ltd, Hong Kong, pp 62–65Google Scholar
  14. De Sanctis M, Adeeb A, Farcomeni A, Patriarca C, Saed A, Attorre F (2013) Classification and distribution patterns of plant communities on Socotra Island, Yemen. Appl Veg Sci 16:148–165. CrossRefGoogle Scholar
  15. Efron B (1988) Logistic regression, survival analysis, and the Kaplan-Meier curve. J Am Stat Assoc 83(402):414–425CrossRefGoogle Scholar
  16. Habrová H (2004) Geobiocoenological differentiation as a tool for sustainable land-use of Soqotra Island (Republic of Yemen). Ekológia Bratislava 23(supplement 1):47–57Google Scholar
  17. Habrová H, Buček A (2013) Overview of biotope types of Socotra island. Journal of Landscape Ecology 6(3):60–83. CrossRefGoogle Scholar
  18. Habrová H, Maděra P (2004) Ecology of Dragon's blood tree (Dracaena cinnabari) communities on the Socotra Island. In: Polehla P (ed) Evaluation of state and development of forest geobiocoenosis. Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech Republic, pp. 120–126Google Scholar
  19. Habrová H, Pavliš J (2017) Dynamic response of woody vegetation on fencing protection in semi-arid areas; case study: pilot exclosure on the Firmihin plateau, Socotra island. Saudi Journal of Biological Sciences 24(2):338–346. CrossRefGoogle Scholar
  20. Habrová H, Čermák Z, Pavliš J (2009) Dragon's blood tree - threatened by overmaturity, not by extinction: dynamics of a Dracaena cinnabari woodland in the mountains of Soqotra. Biol Conserv 142(4):772–778. CrossRefGoogle Scholar
  21. Hildebrandt A, Eltahir EAB (2006) Forest on the edge: seasonal cloud forest in Oman creates its own ecological niche. Geophys Res Lett 33:L11401CrossRefGoogle Scholar
  22. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363CrossRefGoogle Scholar
  23. Hubálková I (2011) Prediction of Dragon's blood tree (Dracaena cinnabari Balf.) stand sample density on Soqotra Island. Journal of Landscape Ecology 4(2):5–17. CrossRefGoogle Scholar
  24. Hubálková I, Houška J, Kubíček J, Mazal P, Pavliš J, Pohořalý J, Vačkářová G, Duchoslav M (2017a) Preliminary anatomical study on secondary thickening parts of endemic Dracaena cinnabari Bal.fil. From the Soqotra island. Wood Research 62(1):67–77Google Scholar
  25. Hubálková I, Maděra P, Volařík D (2017b) Growth dynamics of Dracaena cinnabari under controlled conditions as the most effective way to protect endangered species. Saudi Journal of Biological Sciences 24(7):1445–1452. CrossRefGoogle Scholar
  26. IUCN (2017) IUCN red list of threatened species. Version 2017.2. IUCN Global Species Programme Red List Unit, United Kingdom. htttp:// Accessed 25 October 2017
  27. Jura-Morawiec J, Tulik M (2015) Morpho-anatomical basis of dragon’s blood secret in Dracaena draco stem. Flora 213(1–5).
  28. Kamel M, Ghazaly UM, Callmander MW (2015) Conservation status of the endangered Nubian dragon tree Dracaena ombet in Gebel Elba National Park, Egypt. Oryx 49(4):704–709. CrossRefGoogle Scholar
  29. Klimko M, Wiland-Szymańska J (2008) Scanning electron microscopic studies of leaf surface in taxa of genus Dracaena L. (Dracaenaceae). Botanika – Steciana 12:117–127Google Scholar
  30. Král K, Pavliš J (2006) The first detailed land cover map of Socotra Island by Landsat /ETM+ data. Int J Remote Sens 27(15):3239–3250. CrossRefGoogle Scholar
  31. Krawczyszyn J, Krawczyszyn T (2014) Massive aerial roots growth and form of Dracaena draco. Trees - Structure and Function 28:757–768. CrossRefGoogle Scholar
  32. Krawczyszyn J, Krawczyszyn T (2016) Photomorphogenesis in Dracaena draco. Trees - Structure and Function 30(3):647–664. CrossRefGoogle Scholar
  33. Kürschner H, Hein P, Kilian N, Hubaishan MA (2006) Diversity and zonation of the forests and woodlands of the mountains of northern Socotra, Yemen. Englera (28):11–55.
  34. Lavranos JJ (2017) A new, arborescent subspecies of Dracaena from Saudi Arabia. Cactus and Succulent Journal 89(4):148–152CrossRefGoogle Scholar
  35. Lee ET, Wang J (2003) Statistical methods for survival data analysis. In: Wiley. USA, New JerseyGoogle Scholar
  36. Lvončík S, Maděra P, Volařík D, Vrškový B, Habrová H (2013) First proposal of seed regions for frankincense trees (Boswellia spp.) on Socotra island. Journal of Landscape Ecology 6(3):35–45. CrossRefGoogle Scholar
  37. Maděra P, Kovář P, Vojta J, Volařík D, Úradníček L, Salašová A, Koblížek J, Jelínek P (2013) Vegetation succession along new roads at Soqotra island (Yemen): effect of invasive plant species and utilization of selected native plant resistence against disturbance. Journal of Landscape Ecology 6(3):46–59. CrossRefGoogle Scholar
  38. Mägdefrau K (1975) Das Alter der Drachenbäume auf Tenerife. Flora 164:347–357CrossRefGoogle Scholar
  39. Marrero A, Almeida Pérez SR, Martín-González M (1998) A new species of the wild dragon tree, Dracaena (Dracaenaceae) from gran Canaria and its taxonomic and biogeographic implications. Bot J Linn Soc 128(3):291–314Google Scholar
  40. Mayer AN (2009) Probleme touristischer Entwicklung auf der Insel Soqotra. Vom Missverständnis “Ökotourismus” zu nachhaltigem Tourismus. Jemen Studien 19:1–152Google Scholar
  41. Miller RG Jr (2011) Survival analysis. In: Wiley. USA, New JerseyGoogle Scholar
  42. Miller AG, Morris M, Diccon A, Atkinson R (2004) Ethnoflora of the Soqotra archipelago. In: Royal Botanic Garden. UK, EdinburghGoogle Scholar
  43. Moreno JC (ed) (2008) Lista Roja 2008 de la flora vascular Española. Dirección General de Medio Natural y Política Forestal, Madrid, EspañolGoogle Scholar
  44. Nadezhdina N, Nadezhdin V (2017) Are Dracaena nebulophytes able to drink atmospheric water? Environ Exp Bot 139:57–66. CrossRefGoogle Scholar
  45. Nadezhdina N, Plichta R, Nadezhdin V, Gebauer R, Jupa R, Habrova H, Madera P (2015) A comparative structural and functional study of leaf traits and sap flow in Dracaena cinnabari and Dracaena draco seedlings. Funct Plant Biol 42(11):1092–1105. CrossRefGoogle Scholar
  46. Nadezhdina N, Al-Okaishi A, Madera P (2018) Sap flow measurements in a Socotra Dragon’s blood tree (Dracaena cinnabari) in its area of origin. Trop Plant Biol in press.
  47. Pietsch D, Kühn P (2009) Soil developmental stages of layered cambisols and calcisols on Socotra Island, Yemen. Soil Sci 174(5):292–302. CrossRefGoogle Scholar
  48. Pietsch D, Kühn P, Morris M (2013) Mubarak’s garden. Land improvement on a dry tropical island in the Arabian Sea. Journal of Landscape Ecology 6(3):109–123. CrossRefGoogle Scholar
  49. R Development Core Team (2011) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Accessed 25 October 2017
  50. Rejžek M, Svátek M, Šebesta J, Adolt R, Maděra P, Matula R (2016) Loss of a single tree species will lead to an overall decline in plant diversity: effect of Dracaena cinnabari Balf. f. on the vegetation of Socotra Island. Biol Conserv 196:165–172. CrossRefGoogle Scholar
  51. Rudall PJ (1995) New records of secondary thickenink in monocotyledons. IAWA J 16:261–268CrossRefGoogle Scholar
  52. Scholte P, De Geest P (2010) The climate of Socotra Island (Yemen). A first-time assessment of the timing of the monsoon wind reversal and its influence on precipitation and vegetation patterns. J Arid Environ 74:1507–1515. CrossRefGoogle Scholar
  53. Scholte P, Al-Okaishi A, Suleyman AS (2011) When conservation precedes development: a case study of the opening up of the Socotra archipelago, Yemen. Oryx 45(3):401–410. CrossRefGoogle Scholar
  54. Symon DE (1974) The growth of Dracaena draco - dragon’s blood tree. Journal of the Arnold Arboretum 55:51–58Google Scholar
  55. Therneau T, Lumley T (2011) Survival: Survival analysis, including penalised likelihood. R package version 2.36–5. Accessed 25 October 2017
  56. Van Damme K, Banfield L (2011) Past and present human impacts on the biodiversity of Socotra Island (Yemen): implications for future conservation. Zoology in the Middle East Supplementum 3:31–88CrossRefGoogle Scholar
  57. Van Rampellbergh M, Fleitmann D, Verheyden S, Cheng H, Edwards L, De Geest P, De Vleeschouwer D, Burns JS, Matter A, Claeys P, Keppens E (2013) Mid- to late holocene Indian ocean monsoon variability recorded in four speleothems from Socotra island, Yemen. Quat Sci Rev 65:129–142. CrossRefGoogle Scholar
  58. Wilkin P, Suksathan P, Keeratikiat K, Van Welzen P, Wiland-Szymanska J (2012) A new threatened endemic species from central and northeastern Thailand, Dracaena jayniana (Asparagaceae: tribe Nolinoideae). Kew Bull 67:697–705CrossRefGoogle Scholar
  59. Zar JH (1999) Biostatistical analysis. Pearson Education, IndiaGoogle Scholar
  60. Zhao JL, Zhang L, Dayanandan S, Nagaraju S, Liu DM, Li QM (2013) Tertiary origin and pleistocene diversification of dragon blood tree (Dracaena cambodiana-Asparagaceae) populations in the Asian tropical forests. Plose One 8(4):e60102. CrossRefGoogle Scholar
  61. Zheng DJ, Xie LS, Zhu JH, Zhang ZL (2012) Low genetic diversity and local adaptive divergence of Dracaena cambodiana (Liliaceae) populations associated with historical population bottlenecks and natural selection: an endangered long-lived tree endemic to Hainan Island, China. Plant Biol 14:828–838. CrossRefGoogle Scholar
  62. Zona S, Álvarez DZA, Orellana R, Oviedo R, Jestrow B, Francisco-Ortega J (2014) Dracaena L. (Asparagaceae) in the New World: its history and botany. Vieraea 42:219–240Google Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Petr Maděra
    • 1
    Email author
  • Hana Habrová
    • 1
  • Martin Šenfeldr
    • 1
  • Irena Kholová
    • 1
  • Samuel Lvončík
    • 1
  • Lenka Ehrenbergerová
    • 1
  • Matěj Roth
    • 1
  • Nadezhda Nadezhdina
    • 1
  • Petr Němec
    • 1
  • Jonathan Rosenthal
    • 2
  • Jindřich Pavliš
    • 1
  1. 1.Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
  2. 2.Ecological Research InstituteNew YorkUSA

Personalised recommendations