Advertisement

Biologia

, Volume 73, Issue 4, pp 361–370 | Cite as

Testing temperature effects on woodboring beetles associated with oak dieback

  • Juraj Galko
  • Bjørn Økland
  • Troy Kimoto
  • Slavomír Rell
  • Milan Zúbrik
  • Andrej Kunca
  • Jozef Vakula
  • Andrej Gubka
  • Christo Nikolov
Original Article

Abstract

A warmer climate may potentially have a strong effect on the health status of European oak forests by weakening oak trees and facilitating mass reproduction of wood boring insects. We did a laboratory experiment in Slovakia to study the response of major pest beetles of oak and their parasitoids to different temperature regimes as background for predicting climatic effects and improving management tools of European oak forests. With higher temperatures the most important oak pest Scolytus intricatus emerged much earlier, which indicate that completion of a second generation and increased damage further north in European oak forests may be possible. Lower temperatures gave longer larval galleries and more offspring per parents but still lower beetle production due to semivoltine life cycle. For buprestids and longhorn beetles warmer temperatures resulted in more emerging offspring and a shift towards earlier emergence in the same season, but no emergence in the first season indicated that a change to univoltine populations is not likely. Reduced development success of parasitoids at the highest temperatures (25/30 °C) indicates a loss of population regulation for pest beetle populations. A warmer climate may lead to invasion of other population-regulating parasitoids, but also new serious pest may invade. With expected temperature increases it is recommended to use trap trees both in April and in June, and trap trees should be removed within 2 months instead 1 year as described in the current standard.

Keywords

Quercus Temperature Scolytus intricatus Cerambycids Buprestids Parasitoids 

Notes

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0707-12, APVV-14-0567, APVV-15-0348, APVV-15-0531 and APVV-16-0031. This work was also supported by the Ministry of Agriculture and Rural Development of the Slovak Republic based on the item No. 08 V0301 Research and Development for Innovation and Support of the Competitiveness of Forestry. We thank Dr. Štefan Pavlík for assistance in sampling procedure and identification of parasitoids.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bernardinelli I, Zandigiacomo P (2000) First record of the oak lace bug Corythucha arcuata (say) (Heteroptera, Tingidae) in Europe. Informatore Fitopatologico 50:47–49Google Scholar
  2. Bílý S (1989) Krascovití Buprestidae. Academia, PrahaGoogle Scholar
  3. Brown N, Inward DJG, Jeger M, Denman S (2014) A review of Agrilus biguttatus in UK forests and its relationship with acute oak decline. Forestry 88:53–63.  https://doi.org/10.1093/forestry/cpu039 CrossRefGoogle Scholar
  4. Čapek M (1986) Lumčíkovité (Hymenoptera Braconidae) ako parazitoidy podkôrnych a drevokazných škodcov duba – vektorov tracheomykóz. Biologia 41:535–542Google Scholar
  5. Čapek M (1996) Lumčíkovité (Hym. Braconidae) ako parazitoidy podkornikovitých (Col. Scolytidae). Biodiverzita z aspektu ochrany lesa a poľovníctva, Technická univerzita Zvolen, Zvolen, pp 27–33Google Scholar
  6. Čapek M (1999) Entomophage Insekten. In: Patočka J, Krištín A, Kulfan J, Zach P (eds) Die Eichenschädlinge und ihre Feinde. Technická univerzita Zvolen, Zvolen, pp 292–320Google Scholar
  7. Čapek M, Leontovyč R (1987) Problematika hynutia dubov na Slovensku. Vedecké práce 36. Príroda, BratislavaGoogle Scholar
  8. Csóka J, Hrasovec B, Hirka A, Csepelényi D, Matosevic D, Glavendekic M, Jurc M, Jurc D, Mutun S, Gninenko YI, Zúbrik M (2017) Rapid spread and unexpected outbreaks of the oak lace bug (Corythucha arcuata) in South Eastern Europe. IUFRO meeting Thessaloniki (conference paper)Google Scholar
  9. Doganlar M, Schopf R (1984) Some biological aspect of the European oak bark beetle, Scolytus intricatus (Ratz.) (Col., Scolytidae) in the northern parts of Germany (BRD). J Appl Entomol 97:153–162.  https://doi.org/10.1111/j.1439-0418.1984.tb03731.x Google Scholar
  10. Doganlar M, Reinhard S, Bombosch S (1984) Zum Vorkommen potentieller Vektoren der Eichenwelke in Süd – Niedersachsen (Mitteleuropa). Entomol Gen 10:35–46.  https://doi.org/10.1127/entom.gen/10/1984/35 CrossRefGoogle Scholar
  11. Galko J (2008) Porastová hygiena v dubových porastoch vo vzťahu k podkôrnym a drevokazným škodcom. Dissertation. Technická univerzita ZvolenGoogle Scholar
  12. Galko J, Pavlík Š (2009) Parazitické blanokrídlovce (Hymenoptera) na larvách podkôrnika dubového (Scolytus intricatus Ratz.). Lesn čas – For J 55:1–12.  https://doi.org/10.2478/v10114-009-0001-8 Google Scholar
  13. Galko J, Pavlík Š, Mikuš D, Vakula J, Gubka A (2009) Aktívna obrana pred podkôrnym hmyzom v dubinách. In: Kunca A (ed) Aktuálne problémy v ochrane lesa 2009, Národné lesnícke centrum, Zvolen, pp 110–114Google Scholar
  14. Galko J, Nikolov C, Rell S, Vakula J, Gubka A (2012) Analýza požerkov podkôrnika dubového Scolytus intricatus (Ratz.) (Coleoptera: Curculionidae, Scolytinae). Lesn čas – For J 58:166–170Google Scholar
  15. Gibbs JN, Liese W, Pinon J (1984) Oak wilt for Europe? Outlook on Agriculture 13:203–208CrossRefGoogle Scholar
  16. Godwin HE (1975) The history of the British flora a factual basis for phytogeography, Ed. 2 edn. Cambridge University Press, CambridgeGoogle Scholar
  17. Gogola E, Brutovský D (1999) Eichensplintkäfer Scolytus intricatus Ratz. In: Patočka J, Krištín A, Kulfan J, Zach P (eds) Die Eichenschädlinge und ihre Feinde. Technická univerzita Zvolen, Zvolen, pp 131–151Google Scholar
  18. Gogola E, Chovanec D (1987) Podkôrnik dubový a tracheomykóza dubov. Videopress MON, BratislavaGoogle Scholar
  19. Habermann M, Schopf R (1988) Freilanduntersuchungen zu Flugaktivität, Adultfrass und Bruterfolg von Scolytus intricatus (Ratz.), (Col., Scolytidae). J Appl Entomol 106:252–261.  https://doi.org/10.1111/j.1439-0418.1988.tb00590.x CrossRefGoogle Scholar
  20. Hawkeswood TJ (1978) Observations on some Buprestidae (Coleoptera) from the Blue Mountains, N.S.W. The Aust Zool 19:257–275Google Scholar
  21. Hedqvist KJ (1963) Die Feinde der Borkenkäfer in Schweden. Studia Forestalia Suecica, StockholmGoogle Scholar
  22. Hedqvist KJ (1998) Bark beetle enemies in Sweden. II. Braconidae (Hymenoptera). Entomol Scand Suppl 52:1–87Google Scholar
  23. Heyrovský L, Sláma M (1992) Tesařikovití, Coleoptera, Cerambycidae. Nakladatelstí Kabourek, ZlínGoogle Scholar
  24. Hilszczański J, Sierpinski A (2007) Agrilus spp. the main factor of oak decline in Poland. IUFRO Working Party 7(10):121–125Google Scholar
  25. Holuša J, Hlásny T, Modlinger R, Lukášová K, Kula E (2017) Felled trap trees as the traditional method for bark beetle control: can the trapping performance be increased? Forest Ecol Manag 404:165–173.  https://doi.org/10.1016/j.foreco.2017.08.019 CrossRefGoogle Scholar
  26. Hovorka O, Kindl J, Kalinová B, Knížek M, Vrkočová P, Koutek B (2005) The role of beetle and host volatiles in host colonization in the European oak bark beetle, Scolytus intricatus (Ratzeburg) (Col., Scolytidae). J Appl Entomol 129:221–226.  https://doi.org/10.1111/j.1439-0418.2005.00955.x CrossRefGoogle Scholar
  27. Hrasovec B, Posaric D, Lukic I, Pernek M (2013) First record of oak lace bug (Corythucha arcuata) in Croatia. Sumarski List 137:499–503Google Scholar
  28. Jeffs CT, Lewis OT (2013) Effects of climate warming on host–parasitoid interactions. Ecol Entomol 38:209–218.  https://doi.org/10.1111/een.12026 CrossRefGoogle Scholar
  29. Jurc M, Bojović S, Komjanc B, Krč J (2009) Xylophagous entomofauna in branches of oaks (Quercus spp.) and its significance for oak health in the karst region of Slovenia. Biologia 64:130–138.  https://doi.org/10.2478/s11756-009-0024-8 CrossRefGoogle Scholar
  30. Leontovyč R (1990) Oak decline in Czechoslovakia. Oak decline and status of Ophiostoma sp. on oak in Europe. Bulletin OEPP, Oxford 20:406–407Google Scholar
  31. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstrom M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709.  https://doi.org/10.1016/j.foreco.2009.09.023 CrossRefGoogle Scholar
  32. Marçais B, Desprez-Loustau ML (2014) European oak powdery mildew: impact on trees, effects of environmental factors, and potential effects of climate change. Ann For Sci 71:633–642.  https://doi.org/10.1007/s13595-012-0252-x CrossRefGoogle Scholar
  33. Marković Č, Stojanović A (2003) Significance of parasitoids ih the reduction of oak bark beetle Scolytus intricatus Ratzeburg (Col., Scolytidae) in Serbia. J Appl Entomol 127:23–28.  https://doi.org/10.1046/j.1439-0418.2003.00620.x CrossRefGoogle Scholar
  34. Marković Č, Stojanović A (2011) Phloemophagous and xylophagous insects, their parasitoids, predators and inquilines in the branches of the most important oak species in Serbia. Biologia 66:509–517.  https://doi.org/10.2478/s11756-011-0049-7 Google Scholar
  35. Moraal LG, Hilszczański J (2000) The oak buprestid beetle, Agrilus biguttatus (F.) (Col., Buprestidae), a recent factor in oak decline in Europe. J Pest Sci 73:134–138.  https://doi.org/10.1007/BF02956447 Google Scholar
  36. Patočka J, Novotný J (1987) Účasť hmyzu na hromadnom hynutí dubov na Slovensku. In: Čapek M, Leontovyč R (eds) Problematika hynutia dubov na Slovensku. Vedecké práce 36. Príroda, Bratislava, pp 57–90Google Scholar
  37. Patočka J, Krištín A, Kulfan J, Zach P (1999) Die Eichenschädlinge und ihre Feinde. Technická univerzita Zvolen, ZvolenGoogle Scholar
  38. Pavlík Š (1996) Odumieranie duba cerového (Quercus cerris) spôsobené tracheomykózou. Biodiverzita z aspektu ochrany lesa a poľovníctva, Technická univerzita Zvolen, Zvolen, pp 193–199Google Scholar
  39. Pfeffer A (1989) Kůrovcovití Scolytidae a jádrohlodovití Platypodidae. Academia, PrahaGoogle Scholar
  40. Sama G (2002) Atlas of the Cerambycidae of Europe and the Mediterranean area. Nakladatelství Kabourek, ZlínGoogle Scholar
  41. Turčáni M (2000) Slovenská technická norma 48 2717, Ochrana lesa proti podkôrnikovi dubovému, Úrad pre normalizáciu, metrológiu a skúšobníctvo SR, BratislavaGoogle Scholar
  42. Vrkočová P, Valterová I, Vrkoč J, Koutek B (1999) Volatiles released from oak, a host tree for the bark beetle Scolytus intricatus. Biochem Syst Ecol 28:933–947.  https://doi.org/10.1016/S0305-1978(00)00042-9 CrossRefGoogle Scholar
  43. Vrkočová P, Kalinová B, Valterová I, Koutek B (2002) Analysis of European oak bark beetle (Scolytus intricatus) extracts using hyphenated and chiral chromatography techniques. Talanta 59:107–114.  https://doi.org/10.1016/S0039-9140(02)00456-3 CrossRefGoogle Scholar
  44. Yates MG (1984) The biology of the oak bark beetle Scolytus intricatus (Ratzeburg) (Coleoptera: Scolytidae) in southern England. Bull Entomol Res 74:569–579.  https://doi.org/10.1017/S0007485300013948 CrossRefGoogle Scholar
  45. Zach P (1994) Floeo- a xylofágne chrobáky (Coleoptera) v dubových lapákoch na lesostepnom stanovišti. Lesn čas – For J 40:249–257Google Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Juraj Galko
    • 1
  • Bjørn Økland
    • 2
  • Troy Kimoto
    • 3
  • Slavomír Rell
    • 1
  • Milan Zúbrik
    • 1
  • Andrej Kunca
    • 1
  • Jozef Vakula
    • 1
  • Andrej Gubka
    • 1
  • Christo Nikolov
    • 1
  1. 1.National Forest CentreForest Research Institute ZvolenZvolenSlovak Republic
  2. 2.Norwegian Institute of Bioeconomy ResearchÅsNorway
  3. 3.Canadian Food Inspection AgencyBurnabyCanada

Personalised recommendations