Advertisement

Biologia

, Volume 73, Issue 4, pp 339–349 | Cite as

Contribution to the study of the genus Lemniscomys (Rodentia: Muridae). Morphometric and molecular approaches

  • Imed Ben Salem
  • Aymen Ben Ibrahim
  • M’barek Chetoui
  • Saïd Nouira
Original Article
  • 29 Downloads

Abstract

A total of 204 specimens belonging to eight species of the genus Lemniscomys were examined with standard morphometric measurements. Our results show that the seven Sub-Saharan species seem to follow a latitudinal gradient from the Center to the South of the African continent. The only North African species L. barbarus looks close to L. griselda and L. rosalia. We also applied a molecular analysis through PCR (Polymerase Chain Reaction) method for the amplification of the 16S rRNA gene. For the purpose of constructing a phylogenetic tree with Maximum Likelihood method, we extracted eight sequences from the GenBank library; seven belonging to the genus Lemniscomys and one to the genus Arvicanthis used as outgroup. We managed to identify a region comprised of 458 nucleotides of which 388 were common for all species and 70 were variable. The phylogenetic tree shows us that the sister group L. bellieri and L. macculus, is the most basal, while L. striatus and L. rosalia appears to be close to the sister group L. barbarus and L. zebra. We also noticed a difference between morphometric and molecular results; the latter are more in agreement with pelage patterns subdivision between Lemniscomys species. These differences can be explained by a high rate of phenotypic evolution that can surpass the molecular counterpart as in the case of the genus Gerbillus.

Keywords

Lemniscomys Africa Morphometrics 16S rRNA Pelage patterns 

Notes

Acknowledgments

The present study has been carried out in the Research Unit Biodiversity and Population Biology at the Faculty of Sciences of Tunis (FST). It would not have been possible without the collaboration of many people we want to thank. We express our gratitude to Mr. George Lenglet curator at “Institut Royal des Sciences Naturelles de Belgique” (IRSNB) and Mr. Wim Wendelen curator at “Musée Royal d’Afrique Centrale” (MRAC) and also to Mr. Maher Gtari professor at the “Faculty of Sciences of Tunis”.

Compliance with ethical standards

Ethical responsibilities of authors

The authors are fully committed to the COPE guidelines (Committee On Publication Ethics) and declare that all institutional and national guidelines for the care and use of animals were followed. We also took all the appropriate permissions from museums authorities for the use of specimens included in the study.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of the manuscript.

Supplementary material

11756_2018_44_MOESM1_ESM.pdf (230 kb)
ESM 1 (PDF 229 kb)
11756_2018_44_MOESM2_ESM.pdf (190 kb)
ESM 2 (PDF 190 kb)

References

  1. Abiadh A (2012) Statut taxonomique du genre Gerbillus (Rongeurs, Gerbillinae) en Tunisie. Approches morphologique, cytogénétique et moléculaire. PhD Thesis, Faculty of Sciences of Tunis, TunisiaGoogle Scholar
  2. Abiadh A, Chetoui M, Cheniti TL, Capanna E, Colangelo P (2010) Molecular phylogenetics of the genus Gerbillus (Rodentia, Gerbillinae): implication for systematics, taxonomy and chromosomal evolution. Mol Phylogenet Evol 56:513–518.  https://doi.org/10.1016/j.ympev.2010.04.018 CrossRefPubMedGoogle Scholar
  3. Bellier L, Gautun JC (1967) Notes sur les Lemniscomys de Côte d’Ivoire. Rev Zool Bot Afr 75:282–287Google Scholar
  4. Ben Faleh A (2011) Étude systématique, biogéographique et génétique de la petite gerboise Jacculus jacculus en Tunisie. PhD thesis, Institute of Biotechnology of Monastir, TunisiaGoogle Scholar
  5. Ben Faleh A, Cornette R, Annabi A, Saïd K, Denys C (2013) Patterns of size and shape skull variability in Tunisian populations of Jacculus jacculus. Acta Zool Bulg 65(2):217–223Google Scholar
  6. Ben Salem I, Ben Ibrahim A, Chetoui M, Nouira S (2017) Morpho-geometric analysis of eight grass mouse species of the genus Lemniscomys (Rodentia: Muridae). Pakistan. J Zool 49(1):351–354.  https://doi.org/10.17582/journal.pjz/2017.49.1.sc1 Google Scholar
  7. Boonstra R (2015) Rodentia. The Canadian encyclopedia. http://www.thecanadianencyclopedia.ca/en/article/rodentia/. Accessed 20 May 2016
  8. Cainé L, Lima G, Pontes L, Abrantes D, Pereira M, Pinheiro MF (2006) Species identification by cytochrome b gene: casework samples. Int Congr Ser 1288:145–147.  https://doi.org/10.1016/j.ics.2005.09.152 CrossRefGoogle Scholar
  9. Carleton MD, Van der Straeten E (1997) Morphological differentiation among Subsaharan and north African populations of the Lemniscomys barbarus complex (Rodentia, Muridae). Proc Biol Soc Wash 110(4):640–680Google Scholar
  10. Castiglia R, Fadda C, Corti M, Scanzani A, Verheyen W, Capanna E (2002) Chromosomal evolution in the African Arvicanthine rats (Murinae, Rodentia): comparative cytogenetics of Lemniscomys (L. zebra, L. rosalia, L. striatus) and Arvicanthis dembeesis. J Zool Syst Evol Res 40:223–231.  https://doi.org/10.1046/j.1439-0469.2002.00185.x CrossRefGoogle Scholar
  11. Chappellier A (1927a) Essais de mensuration sur des Muridés (Mammalia, Rodentia). Bull Mus Nat Hist Natur 5:343–349Google Scholar
  12. Chappellier A (1927b) Essais de mensuration sur des Muridés (Mammalia, Rodentia) - Suite. Bull Mus Nat Hist Natur 6:480–485Google Scholar
  13. Çiçek K, Ayaz D, Bayrakci Y (2011) Morphology of the northern banded newt, Ommatotriton ophryticus (Berthold, 1846) (Caudata: Salamandridae) in Uludağ (Bursa, Turkey). Herpetol Notes 4:161–165Google Scholar
  14. Crawford-Cabral J (1998) The Angolan rodents of the superfamily Muroidea: an account of their distribution. Instituto de Investigação Científica Tropical. Estud Ensaios Doc 161:1–223Google Scholar
  15. Cvijanović M, Üzüm N, Ivanović A, Avci A, Özcan ÇG, Olgun K (2017) Variation in skull size and shape in a newt species with male-biased sexual dimorphism. Herpetol J 27:41–46Google Scholar
  16. Dai J, Min J, Xiao Y, Lei X, Shen W, Wei H (2005) The absence of mitochondrial DNA diversity among common laboratory inbred mouse strains. J Exp Biol 208:4445–4450.  https://doi.org/10.1242/jeb.01920 CrossRefPubMedGoogle Scholar
  17. Dieterlen F (1991) Lemniscomys hoogstraali, a new murid species from Sudan. Bonn Zool Beitr 42:11–15Google Scholar
  18. Ducroz J, Volobouev V, Granjon L (2001) An assessment of the systematics of Arvicanthine rodents using mitochondrial DNA sequences: evolutionary and biogeographical implications. J Mamm Evol 8:173–206.  https://doi.org/10.1023/A:1012277012303 CrossRefGoogle Scholar
  19. Eisentraut M (1968) Das Gaumenfaltenmuster bei westafrikanischen Muriden. Zool Jb Syst 96:478–490Google Scholar
  20. Fadda C, Corti M, Verheyen E (2001) Molecular phylogeny of Myomys / Stenocephalemys complex and its relationships with related African genera. Biochem Syst Ecol 29:585–596.  https://doi.org/10.1016/S0305-1978(00)00087-9 CrossRefPubMedGoogle Scholar
  21. Hall T (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci 2(1):60–61Google Scholar
  22. Hammer Ø, Harper DAT, Ryan PD (2001) PAST version 2.17: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9Google Scholar
  23. Happold DCD (2013) Mammals of Africa. Volume III: rodents, hares and rabbits. Bloomsbury Publishing, LondonGoogle Scholar
  24. Heuglin THV (1864) Beiträge zur Zoologie Central-Afrika’s. Leopoldina 31, Abhandlungen 7:1–15Google Scholar
  25. Hotelling H (1936) Relations between two sets of variates. Biometrika 28:321–377CrossRefGoogle Scholar
  26. Illiger JKW (1811) Prodromus systematis mammalium et avium additis terminis zoographicis utriusque classis, eorumque versione germanica. Berlin.  https://doi.org/10.5962/bhl.title.106965
  27. Kennerley R, Van der Straeten E (2016) Lemniscomys roseveari. (errata version published in 2017) The IUCN Red List of Threatened Species 2016.  https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T11494A22439460.en. Accessed 21 July 2017
  28. Kumar S, Stecher G, Tamura K (2016) MEGA: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  29. Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classis, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Tenth edition. Volume I. Laurentii Salvii, StockholmGoogle Scholar
  30. Linnaeus C (1766) Systema naturae per regna tria naturae, secundum classis, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Twelfth edition. Volume I. Regnum animale, part I. Laurentii Salvii, StockholmGoogle Scholar
  31. Monadjem A, Perrin MR (1997) Population dynamics of Lemniscomys rosalia Muridae: Rodentia in a Swaziland grassland: effects of food and fire. S Afr J Zool 32:129–135.  https://doi.org/10.1080/02541858.1997.11448444 CrossRefGoogle Scholar
  32. Monadjem A, Taylor PJ, Denys C, Cotteril F (2015) Rodent of sub-Saharan Africa. A biogeographic and taxonomic synthesis. Walter de Gruyter, BerlinGoogle Scholar
  33. Nowak RM (1999) Walker's mammals of the world. Two volumes 6th edition. Johns Hopkins University Press, BaltimoreGoogle Scholar
  34. Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fools guide to PCR, version II. University of Hawaii, HonoluluGoogle Scholar
  35. Petter F (1961) Répartition géographique et écologique des rongeurs désertiques de la région paléarctique. PhD Thesis. University of Paris, FranceGoogle Scholar
  36. Scherrer B (1984) Biostatistiques. Morin G (ed) University of Québec, MontréalGoogle Scholar
  37. Schlick N, Jensen-Seaman M, Orlebeke K, Kwitek A, Jacob H, Lazar J (2006) Sequence analysis of the complete mitochondrial DNA in 10 commonly used inbred rat strains. Am J Physiol-Cell Physiol 291:C1183–C1192.  https://doi.org/10.1152/ajpcell.00234.2006 CrossRefPubMedGoogle Scholar
  38. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539.  https://doi.org/10.1038/msb.2011.75 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sokal R, Michener C (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438Google Scholar
  40. Thomas O (1904) On mammals from northern Angola collected by Dr. WJ Ansorge. Ann Mag Nat Hist Ser 7(13):405–421Google Scholar
  41. Thomas O (1910) Notes on African rodents. Ann Mag Nat Hist Ser 8(6):221–226Google Scholar
  42. Thomas O, Wroughton RC (1910) Zoological results of the Ruwenzori expedition. Mammalia. Trans Zool Soc London 19:481–518CrossRefGoogle Scholar
  43. Trouessart EL (1881) Catalogue des mamifères vivants et fossiles: Rodentia. Bull Soc d'Études Sci d'Angers 10(2):124Google Scholar
  44. Van der Straeten E (1975) Lemniscomys bellieri, a new species of Muridae from the Ivory Coast (Mammalia, Muridae). Rev Zool Afr 89:906–908Google Scholar
  45. Van der Straeten E (1980) A new species of Lemniscomys (Muridae) from Zambia: Lemniscomys roseveari. Ann Cape Prov Mus Nat Hist 13:55–62Google Scholar
  46. Van der Straeten E (2016) Lemniscomys hoogstraali. (errata version published in 2017) The IUCN Red List of Threatened Species 2016.  https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T11490A22438904.en. Accessed 21 July 2017
  47. Van der Straeten E, Verheyen WN (1979) Note sur la position systematique de Lemniscomys macculus (Thomas et Wroughton, 1910) (Mammalia, Muridae). Mammalia 43:377–389Google Scholar
  48. Van der Straeten E, Verheyen WN (1980) Relations biometriques dans le groupe specifique Lemniscomys striatus (Mammalia, Muridae). Mammalia 44:73–82Google Scholar
  49. Wilson DE, Reeder DM (2005) Mammal species of the world. A taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, BaltimoreGoogle Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Research Unit “Biodiversity and Population Biology”, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia

Personalised recommendations