Advertisement

Biologia

, Volume 74, Issue 5, pp 493–499 | Cite as

Characterization of the complete mitochondrial genome of Rhinogobius leavelli (Perciformes: Gobiidae: Gobionellinae) and its phylogenetic analysis for Gobionellinae

  • Fubin Zhang
  • Yanjun ShenEmail author
Original Article
  • 69 Downloads

Abstract

Freshwater Gobionellinae fish Rhinogobius leavelli is a common small-bodied species, distributed in eastern Asia. Information about genetic characteristics of Rhinogobius fish had been published only for five species, and there were still no relevant reports on R. leavelli. In the present study, the complete mitochondrial genome of R. leavelli was determined, which was 16,499 bp in length with A + T content of 52.5%, consisting of 13 protein-coding genes, 2 ribosomal RNAs, 22 tRNAs, and a control region. The gene composition and the structural arrangement of the R. leavelli complete mtDNA were identical to other Rhinogobius species and most of other teleosts. Phylogenetic analyses placed R. leavelli in a well-supported monophyletic cluster with the other five Rhinogobius species in Gobionellinae and the phylogenetic position of Rhinogobius was closer to Tridentiger.

Keywords

Rhinogobius leavelli Gobionellinae Mitochondrial genome Phylogenetic 

Notes

Acknowledgments

We are grateful for our crew help in collecting specimens. This work was supported by the research start-up fund of the Chongqing Normal University (Nos. 18XLB007).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Experiments were performed in accordance with the recommendations of the Ethics Committee of the Chongqing Normal University (CNU). These policies were enacted according to the Chinese Association for the Laboratory Animal Sciences and the Institutional Animal Care and Use Committee (IACUC) protocols.

Supplementary material

11756_2018_189_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19.7 kb)

References

  1. Agorreta A, Mauro DS, Schliewen U, Tassell JLV, Kovačić M, Zardoya R, Rüber L (2013) Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol Phylogenet Evol 69:619–633.  https://doi.org/10.1016/j.ympev.2013.07.017 CrossRefGoogle Scholar
  2. Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20:99–105.  https://doi.org/10.1007/BF02257369 CrossRefGoogle Scholar
  3. Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319.  https://doi.org/10.1016/j.ympev.2012.08.023 CrossRefGoogle Scholar
  4. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552.  https://doi.org/10.1093/oxfordjournals.molbev.a026334 CrossRefGoogle Scholar
  5. Chen Y (1998) Zhongguo dong wu zhi. Ying gu yu gang. Li xing mu, Ke xue chu ban she: Xin hua shu dian. Beijing fa xing suo fa xing, BeijingGoogle Scholar
  6. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772.  https://doi.org/10.1038/nmeth.2109 CrossRefGoogle Scholar
  7. Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol 212:599–634.  https://doi.org/10.1016/0022-2836(90)90225-b CrossRefGoogle Scholar
  8. Froese R, Pauly D (2018) FishBase, World Wide Web electronic publication. http://www.fishbase.org/search.php
  9. Gong L, Lü ZM, Guo BY, Ye YY, Liu LQ (2017) Characterization of the complete mitochondrial genome of the tidewater goby, Eucyclogobius newberryi (Gobiiformes; Gobiidae; Gobionellinae) and its phylogenetic implications. Conserv Genet Resour 10:1–5.  https://doi.org/10.1007/s12686-017-0772-7 Google Scholar
  10. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704.  https://doi.org/10.1080/10635150390235520 CrossRefGoogle Scholar
  11. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  12. He Y, Jones J, Armstrong M, Lamberti F, Moens M (2005) The mitochondrial genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): considerable economization in the length and structural features of encoded genes. J Mol Evol 61:819.  https://doi.org/10.1007/s00239-005-0102-7 CrossRefGoogle Scholar
  13. Jun J, Choi SH, Kum JD (2016) Complete mitochondrial genome of the endemic south Korean species Odontobutis interrupta (Perciformes, Odontobutidae). Mitochondrial Dna A Dna Mapp Seq Anal 52:2957–2959.  https://doi.org/10.3109/19401736.2015.1060459 Google Scholar
  14. Laslett D, Canback B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24:172–175.  https://doi.org/10.1093/bioinformatics/btm573 CrossRefGoogle Scholar
  15. Liu T, Jin X, Wang R, Xu T (2013) Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis. J Genet 92:423–432.  https://doi.org/10.1007/s12041-013-0283-6 CrossRefGoogle Scholar
  16. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964.  https://doi.org/10.1093/Nar/25.5.955 CrossRefGoogle Scholar
  17. Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138.  https://doi.org/10.1016/s1055-7903(02)00332-9 CrossRefGoogle Scholar
  18. Moritz C, And TED, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292.  https://doi.org/10.1146/annurev.es.18.110187.001413 CrossRefGoogle Scholar
  19. Nass S, Nass MMK (1963a) Intramitochondrial fibers with DNA characteristics. 2. Enzymatic and other hydrolytic treatments. J Cell Biol 19:613–629.  https://doi.org/10.1083/Jcb.19.3.613 CrossRefGoogle Scholar
  20. Nass S, Nass MMK (1963b) Intramitochondrial fibers with DNA characteristics. 1. Fixation and electron staining reactions. J Cell Biol 19:593.  https://doi.org/10.1083/Jcb.19.3.593 CrossRefGoogle Scholar
  21. Oh J, Kim TW, Kim S (2015) The complete mitochondrial genome of Chaenogobius gulosus (Gobiidae, Perciformes) from the South Sea, Korea. DNA Seq 27(1).  https://doi.org/10.3109/19401736.2015.1022742
  22. Ojala D, Montoya J, Attardi G (1981) TRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474.  https://doi.org/10.1038/290470a0 CrossRefGoogle Scholar
  23. Paolo DDM, D'Antonio M, Griggio F et al (2012) MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids Res 40(Database issue):1168–1172.  https://doi.org/10.1093/nar/gkr1144 Google Scholar
  24. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358.  https://doi.org/10.1007/Bf01215182 CrossRefGoogle Scholar
  25. Shen Y, Dai W, Gao Z, Yan G, Gan X, He S (2017a) Molecular phylogeny and divergence time estimates using the mitochondrial genome for the hadal snailfish from the Mariana trench. Sci Bull 16:1106–1108.  https://doi.org/10.1016/j.scib.2017.07.010 CrossRefGoogle Scholar
  26. Shen Y, Kou Q, Zhong Z, Li X, He L, He S, Gan X (2017b) The first complete mitogenome of the South China deep-sea giant isopod Bathynomus sp. (Crustacea: Isopoda: Cirolanidae) allows insights into the early mitogenomic evolution of isopods. Ecol Evol 7:1869–1881.  https://doi.org/10.1002/ece3.2737 CrossRefGoogle Scholar
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefGoogle Scholar
  28. Thacker CE (2015) Biogeography of goby lineages (Gobiiformes: Gobioidei): origin, invasions and extinction throughout the Cenozoic. J Biogeogr 42:1615–1625.  https://doi.org/10.1111/jbi.12545 CrossRefGoogle Scholar
  29. Wolstenholme DR (1992) Animal mitochondrial-DNA - structure and evolution. Int Rev Cytol 141:173–216.  https://doi.org/10.1016/S0074-7696(08)62066-5 CrossRefGoogle Scholar
  30. Xia A, Zhong L, Chen X, Bian W, Zhang T, Shi Y (2015) Complete mitochondrial genome of spined sleeper Eleotris oxycephala (Perciformes, Eleotridae) and phylogenetic consideration. Biochem Syst Ecol 62:11–19.  https://doi.org/10.1016/j.bse.2015.07.030 CrossRefGoogle Scholar
  31. Yamasaki YY, Nishida M, Suzuki T et al (2015) Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 90:20–33.  https://doi.org/10.1016/j.ympev.2015.04.012 CrossRefGoogle Scholar
  32. Yang QH, Lin Q, He LB, Huang RF, Lin KB, Ge H, Wu JS, Zhou C (2015) The complete mitochondrial genome sequence of Acentrogobius sp. (Gobiiformes: Gobiidae) and phylogenetic studies of Gobiidae. Mitochondrial DNA 27:1–2.  https://doi.org/10.3109/19401736.2015.1060444 Google Scholar
  33. Zhong L, Wang M, Li D, Tang S, Zhang T, Bian W, Chen X (2018) Complete mitochondrial genome of freshwater goby Rhinogobius cliffordpopei (Perciformes, Gobiidae): genome characterization and phylogenetic analysis. Genes Genom 40:1137–1148.  https://doi.org/10.1007/s13258-018-0669-1 CrossRefGoogle Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of Environmental Science and Engineering; Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education) China West Normal UniversityNanchongChina
  2. 2.Chongqing Key Laboratory of Animal Biology, School of Life SciencesChongqing Normal UniversityChongqingChina

Personalised recommendations