, Volume 74, Issue 3, pp 205–214 | Cite as

Molecular phylogeny of Muscari (Asparagaceae) inferred from cpDNA sequences

  • Ayten DizkiriciEmail author
  • Oktay Yigit
  • Mesut Pinar
  • Huseyin Eroglu
Original Article


In this study, we tried to figure out phylogenetic relationships and taxonomical positions of closely related Muscari species. Four different cpDNA regions including both coding and non-coding ones, namely, matK, trnT(UGU)-trnL(UAA) intergenic spacer (IGS), trnL(UAA) intron and trnL(UAA)-F(GAA) IGS, were employed to determine the exact circumscription of three subgenera, Muscari, Leopoldia and Botryanthus. Seventy Muscari accessions representing 31 Muscari species and different number of previously published sequences retrieved from NCBI database were analyzed. The concatenated and matK data alone were observed to be informative while none of the used non-coding regions was suitable to determine phylogeny of Muscari. Concatenated alignment gave almost the same tree topology with matK sequence. Muscari azureum and M. coeleste phylogenetically separated from all other species of Botryanthus and four main clades were observed in both of the trees even though three subgenera are accepted by Flora of Turkey. After discussing the phylogenetic positions and morphological characters in detail, moving of these two species from Botryanthus to Pseudomuscari subgenus was suggested. Thus, this study proposes that the number of Muscari subgenera should be increased from three to four in Flora of Turkey. The position of M. mirum was also remarkable; it always located distantly to its relatives of Leopoldia. Although this species may also be distinguished based on morphological features such as quite shorter plant length, one or sometimes two relatively wider leaves, and a larger fruit, it needs further studies to resolve its position reliably. Interesting positions of other species were also discussed in detail based on morphological characters in the text.


Muscari Phylogeny Pseudomuscari matK trnT-F 



This research was supported by The Scientific and Technological Research Council of Turkey (TUBİTAK; grant no. 114Z736). We sincerely thank “anonymous” reviewers and the managing editor, Katarina Hegedusova, for their constructive criticisms that improved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11756_2018_164_MOESM1_ESM.pdf (336 kb)
ESM 1 (PDF 336 kb)


  1. Anacker BL (2014) The nature of serpentine endemism. Am J Bot 101(2):219–224. CrossRefGoogle Scholar
  2. Anacker BL, Whittall JB, Goldberg EE, Harrison SP (2011) Origins and consequences of serpentine endemism in the California flora. Evolution 65(2):365–376. CrossRefGoogle Scholar
  3. Bogler D, Francisco-Ortega J (2004) Molecular systematic studies in cycads: evidence from trnL intron and ITS2 rDNA sequences. Bot Rev 70:260–273.[0260:MSSICE]2.0.CO;2Google Scholar
  4. Böhnert T, Lobin W (2017) Leopoldia neumannii sp. nov. (Asparagaceae, Scilloideae): a new species of Muscari sensu lato from Greece. Willdenowia 47:179–185. CrossRefGoogle Scholar
  5. Borzatti Von Loewenstern A, Giordani T, Astuti G, Andreucci A, Peruzzi L (2013) Phylogenetic relationships of Italian Bellevalia species (Asparagaceae), inferred from morphology, karyology and molecular systematics. Plant Biosyst 147:776–787. CrossRefGoogle Scholar
  6. Buerki S, Jose S, Yadav SR, Goldblatt P, Manning JC, Forest F (2012) Contrasting biogeographic and diversification patterns in two Mediterranean-type ecosystems. PLoS One 7(6):e39377. CrossRefGoogle Scholar
  7. Clegg MT, Zurawski G (1991) Chloroplast DNA and the study of plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 1–13Google Scholar
  8. Cullen J, Knees SG, Cubey SH, Shaw JMH (2011) The European Garden Flora - flowering plants: a manual for the identification of plants cultivated in Europe both out-doors and under glass, 2nd Edn. Cambridge University Press, New York, pp 124–125Google Scholar
  9. Czerepanov SK (1995) Vascular plants of Russia and adjacent states (the former USSR). Cambridge University Press, Cambridge, New YorkGoogle Scholar
  10. Davis PH, Stuart DC (1980) Muscari Mill. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 5. Cambridge University Press, Cambridge, pp 46–49Google Scholar
  11. Davis PH, Stuart DC (1984) Muscari Mill. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands 8. Edinburgh University Press, Edinburgh, pp 245–263Google Scholar
  12. Davis PH, Mill RR, Kit T (1988) Flora of Turkey and the East Aegean Islands, vol 10. Edinburgh University Press, EdinburghGoogle Scholar
  13. Demirci S, Özhatay N, Koçyiğit M (2013) Muscari erdalii (Asparagaceae, Scilloideae), a new species from southern Turkey. Phytotaxa 154:38–46. CrossRefGoogle Scholar
  14. Doyle JJ, Doyle JL (1987) A rapid DNA procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15 Accessed 15 Aug 2018Google Scholar
  15. Ekim T, Koyuncu M, Vural M, Duman H, Aytaç Z, Adıgüzel N (2000) Pteriophyta and Spermatophyta. Red Data Book of Turkish plants. Barışcan Ofset, AnkaraGoogle Scholar
  16. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. CrossRefGoogle Scholar
  17. Garbari F (2003) Muscari neglectum Guss. e M. atlanticum Boiss. et Reuter (Hyacinthaceae). Tipi, caratteristiche e considerazioni sulle due specie. Inform Bot Ital 35(2):329–336 Accessed 15 Aug 2018Google Scholar
  18. Garbari F, Greuter W (1970) On the taxonomy and typification of Muscari Miller (Liliaceae) and allied genera, and on the typification of generic names. Taxon 19:329–334. CrossRefGoogle Scholar
  19. Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mol Biol Evol 11:769–777. Google Scholar
  20. Govaerts R (2018) World checklist of Asparagaceae. Facilitated by the Royal Botanic Gardens, Kew. Accessed 15 August 2018
  21. Gürsoy M, Şık L (2010) Batı Anadolu’daki Muscari armeniacum Leichtlin ex Baker ve Muscari neglegtum Guss. türleri üzerinde karşılaştırmalı anatomik araştırmalar. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 6(1):61–72 Accessed 15 Aug 2018Google Scholar
  22. Heed Y (2010) Muscari armeniacum and M. polyanthum - one or two species. Dissertation, Department of Plant and Environmental Sciences University of GothenburgGoogle Scholar
  23. Herrmann H, Weiss G, Durka W (2005) Biological flora of Central Europe: Muscari tenuiflorum Tausch. Flora 201:81–101. CrossRefGoogle Scholar
  24. Hilu KW, Liang H (1997) The matK gene: sequence variation and application in plant systematics. Am J Bot 84:830–839. CrossRefGoogle Scholar
  25. Huelsenbeck JP, Ronquist F (2003) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755. CrossRefGoogle Scholar
  26. Jafari A, Maassoumi AA (2011) Synopsis of Leopoldia, Muscari and Pseudomuscari (Hyacithaceae) in Iran, with Leopoldia ghouschtchiensis sp. nova. Ann Bot Fen 48:396–400. CrossRefGoogle Scholar
  27. Jafari A, Maassoumi AA, Farsi M (2008) Karyological study on Bellevalia and Muscari (Liliaceae) species of Iran. Asian J Plant Sci 7:50–59. CrossRefGoogle Scholar
  28. Johnson M, Özhatay N, Garbari F (1996) The genus Muscari (Hyacinthaceae) in Turkey: taxonomy, distribution and chromosome analysis. In: Öztürk MA et al (eds) Plant life In Southwest and Central Asia. Ege Univ. Press, İzmir, pp 34–53Google Scholar
  29. Karlén T (1991) Muscari Miller. In: Strid A, Tan K (eds) Mountain Flora of Greece, vol 2. Edinburgh Univ. Press, Edinburgh, pp 697–701Google Scholar
  30. Kaya E (2014) Muscari Mill. In: Türkiye Geofitleri, vol. 2. Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, Yayın No: 96, Yalova, Turkiye, pp 350–411Google Scholar
  31. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. CrossRefGoogle Scholar
  32. Li JH, Bogle AL, Klein AS (1997) Interspecific relationships and genetic divergence of the disjunct genus Liquidambar (Hamamelidaceae). Rhodora 99:229–241 Accessed 15 Aug 2018Google Scholar
  33. Martínez-Azorín M, Crespo MB, Juan A, Fay MF (2011) Molecular phylogenetics of subfamily Ornithogaloideae (Hyacinthaceae) based on nuclear and plastid DNA regions, including a new taxonomic arrangement. Ann Bot 107:1–37. CrossRefGoogle Scholar
  34. Nersesian A (2001) A karyosystematic study of Armenian Muscari and Bellevalia (Hyacinthaceae). Bocconea 13:383–389 Accessed 15 Aug 2018Google Scholar
  35. Özhatay N (2000) Muscari Miller. In: Güner A, Özhatay N, Ekim T, Başer KHC (eds) Flora of Turkey and the East Aegean Islands, vol 11. Edinburgh University Press, Edinburgh, pp 237–240Google Scholar
  36. Özhatay N, Kültür Ş (2006) Check-list of additional taxa to the supplement Flora of Turkey III. Turk J Bot 30:281–316 Accessed 15 Aug 2018Google Scholar
  37. Özhatay N, Kültür Ş, Aslan S (2009) Check-list of additional taxa to the supplement Flora of Turkey IV. Turk J Bot 33:191–226. Google Scholar
  38. Özhatay FN, Kültür Ş, Gürdal MB (2011) Check-List of additional taxa to the supplement Flora of Turkey V. Turk J Bot 35:589–624. Google Scholar
  39. Pfosser M, Speta F (1999) Phylogenetics of Hyacinthaceae based on plastid DNA sequences. Ann Mo Bot Gard 86:852–875. CrossRefGoogle Scholar
  40. Pınar SM, Fidan M, Eroğlu H (2018) Muscari botryoides (L.) Mill.: a new record for the family Asparagaceae from Turkey. Turk. J Agric Res 5(2):116–119. Google Scholar
  41. Pirhan AF, Yıldırım H, Altıoğlu Y (2014) Muscari serpentinicum sp. nova (Asparagaceae): a new species from western Anatolia, Turkey. Ot Sistematik Botanik Dergisi 21(1):1–14Google Scholar
  42. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. CrossRefGoogle Scholar
  43. Ruiz Rejón M, Oliver JL (1981) Genetic variability in Muscari comosum (Liliaceae). I. A comparative analysis of chromosome polymorphisms in Spanish and Aegean populations. Heredity 47(3):403–407. CrossRefGoogle Scholar
  44. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92(1):142–166. CrossRefGoogle Scholar
  45. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94(3):275–288. CrossRefGoogle Scholar
  46. Small RL, Lickey EB, Shaw J, Hauk WD (2005) Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. Mol Phylogenet Evol 36(3):509–522. CrossRefGoogle Scholar
  47. Speta F (1989) Muscari (subg. Leopoldia) mirum Speta, spec. nova, im Kreise seiner nächsten Verwandten. Phyton (Austria) 29(1):105–117Google Scholar
  48. Speta F (1998) Hyacinthaceae. In: Kubitzki K (ed) The families and genera of vascular plants III. Springer, Berlin, pp 261–285Google Scholar
  49. Suárez-Santiago VN, Salinas JS, Romero-García AT, Garrido-Ramos MA, de la Herran R, Ruiz-Rejón C, Ruiz-Rejón M, Blanca G (2007) Polyploidy, the major speciation mechanism in Muscari subgenus Botryanthus in the Iberian Peninsula. Taxon 56:1171–1184. CrossRefGoogle Scholar
  50. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109. CrossRefGoogle Scholar
  51. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35(3):e14. CrossRefGoogle Scholar
  52. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C content biases. Mol Biol Evol 9:678–687. Google Scholar
  53. Turktas M, Aslay M, Kaya EF (2012) Molecular characterization of phylogenetic relationships in Fritillaria species inferred from chloroplast trnL-trnF sequences. Turk J Biol 36:552–560. Google Scholar
  54. Uysal T, Ertuğrul K, Dural H, Küçüködük M (2007) Muscari turcicum (Liliaceae/Hyacinthaceae), a new species from South Anatolia. Bot J Linn Soc 154:233–236. CrossRefGoogle Scholar
  55. Valdés B, Lifante ZD (1992) Karyology and reproductive biology of Muscari matritensis M. Ruíz Rejón et al. (Liliaceae). Bot J Linn Soc 109:125–130. CrossRefGoogle Scholar
  56. Yang J, Vázquez L, Chen X, Li H, Zhang H, Liu Z, Zhao G (2017) Development of chloroplast and nuclear DNA markers for Chinese Oaks (Quercus Subgenus Quercus) and assessment of their utility as DNA barcodes. Front Plant Sci 8:816. CrossRefGoogle Scholar
  57. Yıldırım H (2015) Muscari atillae (Asparagaceae): a new species from eastern Anatolia, Turkey. Phytotaxa 213(3):291–295. CrossRefGoogle Scholar
  58. Yıldırım H (2016) Muscari elmasii sp. nova (Asparagaceae): a new species from western Anatolia, Turkey. Turk J Bot 40:380–387. Google Scholar
  59. Yıldırımlı Ş (2011) Three new species from Turkey. Ot Sistematik Botanik Dergisi 18(1):1–12Google Scholar
  60. Yilmaz H, Yilmaz OY, Akyüz YF (2017) Determining the factors affecting the distribution of Muscari latifolium, an endemic plant of Turkey, and a mapping species distribution model. Ecol Evol 7(4):1112–1124. CrossRefGoogle Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Ayten Dizkirici
    • 1
    Email author
  • Oktay Yigit
    • 1
  • Mesut Pinar
    • 2
  • Huseyin Eroglu
    • 3
  1. 1.Department of Molecular Biology and GeneticsVan Yüzüncü Yıl UniversityVanTurkey
  2. 2.School of HealthVan Yüzüncü Yıl UniversityVanTurkey
  3. 3.Department of BiologyVan Yüzüncü Yıl UniversityVanTurkey

Personalised recommendations