, Volume 69, Issue 11, pp 1510–1519 | Cite as

Impact of expected climate change on soil water regime under different vegetation conditions

  • Csilla Farkas
  • Györgyi GelybóEmail author
  • Zsófia Bakacsi
  • Ágota Horel
  • Andrea Hagyó
  • Laura Dobor
  • Ilona Kása
  • Eszter Tóth
Section Botany


A mathematical model was applied for the Bükk Mountains (Hungary) to evaluate the effects of climate change on soil water balance elements and soil water regime. Model runs using SWAP model were performed for combinations of four distinctive soil types and three land use systems of arable land, grassland, and forest. The temporal variation of soil water regime under changing climatic conditions was examined considering no land cover change occurring in the future. The climate data consisted of the predictions of two regional climate models, the Swiss CLM and the Swedish RCA. The RCA results showed 45% to 50% and the CLM showed 5% to 14% higher future precipitation outlook compared to present conditions. Considering different land use types, the projected number of days with soil moisture deficit was the highest in forest ecosystems for both the upper 50 cm soil layer and the whole soil profile, which could be as high as 61% of days below optimal soil water content range. Our results showed increased water fluxes, especially in deep percolation in far future period and a strong influence of soil properties on the changes in the climate model results, indicating significant long-term effects of climate change on soil water regime.

Key words

climate change land use soil water regime SWAP model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baigorria G.A., Jones J.W., Shin D.W., Mishra A. & O’Brien J.J. 2007. Assessing uncertainties in crop model simulations using daily bias-corrected regional circulation model outputs. Clim. Res. 34: 211–222.CrossRefGoogle Scholar
  2. Bartholy J., Horányi A., Krüzselyi I., Pieczka I., Pongrácz R., Szabó P., Szépszó G. & Torma C. 2011. Evaluating the expected climate change using dynamic models, pp. 1–281. In: Bartholy J., Bozo L. & Haszpra L. (eds) Climate change, MTA-ELTE (Hungarian Academy of Sciences — Eötvös Loránd University), Budapest. (In Hungarian)Google Scholar
  3. Black E., Blackburn M., Harrison G., Hoskins B. & Methven J. 2004. Factors contributing to the summer 2003 European heatwave. Weather 59: 217–223.CrossRefGoogle Scholar
  4. Christensen J.H., Boberg F., Christensen O.B. & Lucas-Picher P. 2008. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett. 35: L20709.CrossRefGoogle Scholar
  5. Christensen J.H. & Christensen O.B. 2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Chang. 81: 7–30.CrossRefGoogle Scholar
  6. Dobor L., Barcza Z. & Havasi Á. 2012. Bias correction of the outputs of regional climate models. Conference of Doctoral Schools in Environmental Sciences, 2012. Eötvös Loránd University, Budapest, pp. 29–36. (In Hungarian)Google Scholar
  7. Easterling D.R., Meehl G.A., Parmesan C., Changnon S.A., Karl T.R. & Mearns L.O. 2000. Climate extremes: observations, modeling, and impacts. Science 22: 2068–2074.CrossRefGoogle Scholar
  8. Even J. & Parkin G. 1996. Validation of catchment models for predicting land-use and climate change impacts. J. Hydrol. 175: 583–594.CrossRefGoogle Scholar
  9. Farkas C., Beldrino S., Bechmann M. & Deelstra J. 2013. Soil erosion and phosphorus losses under variable land use as simulated by the INCA-P model. Soil Use Mgmt. 29: 124–137.CrossRefGoogle Scholar
  10. Feddes R.A., Kowalik P.J. & Zaradny H. 1978. Simulation of field water use and crop yield. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, 195 pp.Google Scholar
  11. Fischer G., Shah M., Tubiello F.N. & van Velhuizen H. 2005. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Phil. Trans. R. Soc. B. 360: 2067–2083.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Fu B., Chen L., Ma K., Zhou H. & Wang J. 2000. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China. Catena 39: 69–78.CrossRefGoogle Scholar
  13. Gelybó G., Tóth E., Bakacsi Z., Molnár S. & Farkas C. 2012. Climate change impacts on the water regime of a brown forest soil, pp. 178–185. In: Celkova A. (ed.), Proc.20th International Poster Day Transport of Water, Chemicals and Energy in the Soil-Plant-Atmosphere System. Bratislava, Slovakia.Google Scholar
  14. Giorgi F. & Lionello P. 2008. Climate change projections for the Mediterranean region. Global Planet Change 63: 90–104.CrossRefGoogle Scholar
  15. Hanel M., Vizina A., Máca P. & Pavlásek J. 2012. A multi-model assessment of climate change impact on hydrological regime in the Czech Republic. J. Hydrol. Hydromech. 60: 152–161.CrossRefGoogle Scholar
  16. Heinrich G. & Gobiet A. 2011. The future of dry and wet spells in Europe: A comprehensive study based on the ENSEMBLES regional climate models. Int. J. Climatol. 32: 1951–1970.CrossRefGoogle Scholar
  17. Ines A.V.M. & Hansen J.W. 2006. Bias correction of daily GCM rainfall for crop simulation studies. Agr. Forest Meteorol. 138: 44–53.CrossRefGoogle Scholar
  18. IPCC 2000. Emission scenarios. In: Nakicenovic N. & Swart R. (eds), Special Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, 570 pp.Google Scholar
  19. IPCC (2007) Climate Change 2007: Impacts, adaptation and vulnerability. In: Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J. & Hanson C.E. (eds), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 976 pp.Google Scholar
  20. Jian S.Q., Zhao C.Y., Fang S.M. & Yu K. 2014. Soil water content and water balance simulation of Caragana korshinskii Kom. in the semiarid Chinese Loess Plateau. J. Hydrol. Hydromech. 62: 89–96.CrossRefGoogle Scholar
  21. Kjelleström E., Nikulin G., Hansson U., Strandberg G. & Ullerstig A. 2010. 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus 63A: 24–40.Google Scholar
  22. Kelliher F.M., Leuning R. & Schulze E.-D. 1993. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia 95: 153–163.CrossRefGoogle Scholar
  23. Krug E.C. & Frink C.R. 1983. Acid rain on acid soil: a new perspective. Science 221: 520–525.PubMedCrossRefGoogle Scholar
  24. Krüzselyi I., Bartholy J., Horányi A., Pieczka I., Pongrácz R., Szabó P., Szépszó G. & Torma Cs. 2011. The future climate characteristics of the Carpathian Basin based on a regional climate model mini-ensemble. Adv. Sci. Res. 6: 69–73.CrossRefGoogle Scholar
  25. Kurukulasuriya P. & Rosenthal S. 2003. Climate change and agriculture: a review of impacts and adaptations. Climate Change Series 91. Environment Department Papers, World Bank, Washington D.C., 106 pp.Google Scholar
  26. Lakatos M. & Bihari Z. 2011. Observed recent tendencies in air temperature and precipitation, pp. 1–281. In: Bartholy J., Bozo L. & Haszpra L. (eds), Climate change. MTA-ELTE (Hungarian Academy of Sciences — Eötvös Loránd University), Budapest. (In Hungarian)Google Scholar
  27. Li H., Sheffield J. & Wood E.F. 2010. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. 115: D10101.CrossRefGoogle Scholar
  28. Lichner Ľ., Capuliak J., Zhukova N., Holko L., Czachor H. & Kollár J., 2013. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia 68: 1104–1108.CrossRefGoogle Scholar
  29. Maraun D. 2012. Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett. 39: L06706.CrossRefGoogle Scholar
  30. Monteith J.L. 1965. Evaporation and environment. Symp. Soc. Exp. Biol. 19: 205–234.PubMedGoogle Scholar
  31. Mori M., Nagai H., Ogata T., Yasutake D. & Kitano M., 2013. Soil moisture variability on a steep slope near a ridge in a forested mountain range, Shikoku, Japan: a model study. Biologia 68: 1109–1112.CrossRefGoogle Scholar
  32. Moser D., Sauberer N. & Willner W. 2011. Generalisation of drought effects on ecosystem goods and services over the Alps. Alp-Water-Scarce internal project report.Google Scholar
  33. Mualem Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Res. 12: 513–522.CrossRefGoogle Scholar
  34. Nikodem A., Kodešová R. & Bubeníčková L. 2013 Simulation of the influence of rainfall redistribution in spruce and beech forest on the leaching of Al and SO42− from forest soils. J. Hydrol. Hydromech. 61: 39–49.CrossRefGoogle Scholar
  35. Olesen J.E. & Bindi M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. Eur.J. Agron. 16: 239–262.CrossRefGoogle Scholar
  36. Piani C., Haerter J.O. & Coppola E. 2010. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 99: 187–192.CrossRefGoogle Scholar
  37. Rawls W.J., Brakensiek D.L. & Saxton K.E. 1982. Estimation of soil water properties. Trans. ASAE 25: 1316–1320&1328.CrossRefGoogle Scholar
  38. Richards L.E. 1931. Capillary conduction of liquids through porous mediums. Phys. 1: 318–339.CrossRefGoogle Scholar
  39. Sharkey T.D. 1984. Transpiration-induced changes in the photosynthetic capacity of leaves. Planta 160: 143–150.PubMedCrossRefGoogle Scholar
  40. Stern N.N.H. 2007. The economics of climate change. The Stern Review. Cambridge University Press, Cambridge, UK, 712 pp.CrossRefGoogle Scholar
  41. Trnka M., Kersebaum K.C., Eitzinger J., Hayes M., Hlavinka P., Svoboda M., Dubrovský M., Semerádová D., Wardlow B., Pokorný E., Možný M., Wilhite D. & Žalud Z. 2013 Consequences of climate change for the soil climate in Central Europe and the central plains of the United States. Climatic Change 120: 405–418CrossRefGoogle Scholar
  42. Teutschbein C. & Seibert J. 2010. Regional climate models for hydrological impact studies at the catchment scale: A review of recent model strategies. Geogr. Compass 4: 834–860.CrossRefGoogle Scholar
  43. Tucker C.J., Slayback D.A., Pinzon J.E., Los S.O., Myneni R.B. & Taylor M.G. 2001 Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Inter. J. Biometeorol. 45: 184–190.CrossRefGoogle Scholar
  44. van Dam J. 2000. Field-scale water flow and solute transport. SWAP model concepts, parameter estimation, and case studies. PhD thesis. Wageningen University, The Netherlands, 167 pp.Google Scholar
  45. van Genuchten M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892–898.CrossRefGoogle Scholar
  46. van Genuchten M.Th., Leij F.J. & Yates S.R. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils, version 1.0. EPA Report 600/2-91/065, U.S. Salinity Laboratory, USDA, ARS, Riverside, California.Google Scholar
  47. Várallyay G. 2009. Soil conditions in Hungary based on the data from the Soil Conservation Information and Monitoring System (SIMS). In: Juhász I. (ed.), Soil Conservation Information and Monitoring System of Hungary. Ministry of Agriculture and Rural Development, Budapest, Hungary.Google Scholar
  48. Varis O., Kajander T. & Lemmelä R. 2004. Climate and water: from climate models to water resources management and vice versa. Climatic Change 66: 321–344.CrossRefGoogle Scholar
  49. White R.H. & Toumi R. 2013. The limitations of bias correcting regional climate model inputs. Geophys. Res. Lett. 40: 2907–2912.CrossRefGoogle Scholar
  50. Zachos J.C., Dickens G.R. & Zeebe R.E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279–283PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Csilla Farkas
    • 1
    • 2
  • Györgyi Gelybó
    • 2
    Email author
  • Zsófia Bakacsi
    • 2
  • Ágota Horel
    • 2
  • Andrea Hagyó
    • 2
    • 3
  • Laura Dobor
    • 4
  • Ilona Kása
    • 2
  • Eszter Tóth
    • 2
  1. 1.BioforskNorwegian Institute for Agricultural and Environmental ResearchÅsNorway
  2. 2.Institute of Soil Sciences and Agricultural Chemistry, Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
  3. 3.Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Monitoring Agricultural Resources UnitEuropean CommissionIspra VAItaly
  4. 4.Department of MeteorologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations