Advertisement

Biologia

, Volume 69, Issue 9, pp 1179–1189 | Cite as

Environmental impact of heated mining waters on clitellate (Annelida: Clitellata) assemblages

  • Sylvie RůžičkováEmail author
  • Jana Schenková
  • Veronika Weissová
  • Jan Helešic
Section Zoology

Abstract

Mining is a relatively highly monitored industry. While chemical pollutants (toxic ions, radionuclides, etc.) have mostly been eliminated from mining waters, other types of environmental pollution (temperature regime alterations, high concentrations of various anions, etc.) can affect benthic invertebrates. In this study, we focused on the effect of mining water effluent on the diversity and density of aquatic Clitellata. Four sampling sites were selected. Three sites in a natural stream (the Nedvědička River, Czech Republic), one upstream and two downstream from the mining effluent, and one site on the mining waters were sampled monthly during 2008–2009. Environmental variables were recorded in and samples were collected from two types of habitats — riffles and pools. The response of clitellate assemblages was evaluated using principal component analysis and generalised estimating equations. The results indicated that the mining effluent caused partial species exchange and had negative effects on clitellate taxa richness and abundance. These responses were specific to both the habitat (riffle/pool) and species sampled. In each of the different taxa studied, we observed one of four typical clitellate responses: (a) elimination of stenotherm species; (b) reduction of clitellate species followed by quick recovery; (c) neutral response; or (d) positive influence. We found that aquatic clitellates, which are considered to be eurytopic with broad ecological valences, are also sensitive to even slight environmental pollution.

Key words

aquatic Clitellata oligochaeta thermal pollution mineralised heated water pool and riffle habitats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames B., McCann J. & Yamasaki E. 1975. Methods for detecting carcinogens and mutagens with the Salmonella/mammalianmicrosome mutagenicity test. Mutation Res. 31(6): 347–364. DOI:  10.1016/0165-1161(75)90046-1 PubMedCrossRefGoogle Scholar
  2. Batty L.C., Atkin L. & Manning D.A.C 2005. Assessment of the ecological potential of mine-water treatment wetland using a baseline survey of macroinvertebrate communities. Environ. Pollut. 138(3): 412–419. DOI:  10.1016/j.envpol.2005.04.022 PubMedCrossRefGoogle Scholar
  3. Bojková J., Schenková J., Horsák M. & Hájek M. 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 667(1): 159–171. DOI:  10.1007/s10750-011-0634-3 CrossRefGoogle Scholar
  4. Brinkhurst R.O. & Cook D.G. 1974. Aquatic earthworms (Annelida: Oligochaeta), pp. 143–156. In: Hart C.W. Jr & Fuller S.L.H. (eds), Pollution Ecology of Freshwater Invertebrates, Academic Press, New York, 389 pp. ISBN-13: 978-0123284501, ISBN-10: 0123284503Google Scholar
  5. Cellot B. & Juget J. 1998. Oligochaete drift in a large river (French Upper Rhôe): the effect of life cycle and discharge. Hydrobiologia 389(1–3): 183–191. DOI:  10.1023/A:1003511916699 CrossRefGoogle Scholar
  6. Directive 2008/105/EC of European Parliament and of the Council on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC”, OJ L348, pp. 84–97, 24.12.2008Google Scholar
  7. Dumnicka E. 2000. Studies on Oligochaeta taxocens in streams, interstitial and cave waters of southern Poland with remarks on Aphanoneura and Polychaeta distribution. Acta Zool. Cracov. 43(3–4): 339–392.Google Scholar
  8. Dumnicka E. & Galas J. 2006. Distribution of benthic fauna in relation to environmental conditions in an inundated opencast sulphur mine (Piaseczno reservoir, Southern Poland). Aquat. Ecol. 40(2): 203–210. DOI:  10.1007/s10452-005-6040-z CrossRefGoogle Scholar
  9. Dumnicka E. & Pasternak K. 1978. The influence of physicochemical properties of water and bottom sediments in the River Nida on the distribution and numbers of Oligochaeta. Acta. Hydrobiol. (Cracow) 20(3): 215–232.Google Scholar
  10. Generlich O. & Giere O. 1996. Osmoregulation in two aquatic oligochaetes from habitats with different salinity and comparison to other annelids. Hydrobiologia 334(1–3): 251–261. DOI:  10.1007/BF00017375 CrossRefGoogle Scholar
  11. Haidekker A. & Hering D. 2008. Relationship between insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: A multivariate study. Aquat. Ecol. 42(3): 463–481. DOI:  10.1007/s10452-007-9097-z CrossRefGoogle Scholar
  12. Hogg I.D. & Williams D.D. 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystemlevel manipulation. Ecology 77(2): 395–407. DOI: http://dx.doi.org/10.2307/2265617 CrossRefGoogle Scholar
  13. Hrabě S. 1981. Vodní máloštětinatci (Oligochaeta) Československa. Acta Univ. Carol. Biol. 1–2, 1979, 168 pp.Google Scholar
  14. Hojsgaard S., Halekoh U. & Yan J. 2006. The R Package geepack for generalized estimating equations. J. Stat. Soft. 15(2): 1–11.Google Scholar
  15. Hudcová H., Badurová J., Rozkošný M., Funková R., Svobodová J. & Sova J. 2012. Ovlivnění jakosti vod a sedimentů v povodí řeky Nedvědičky těžbou a zpracováním uranových rud. VTEI Vodohospodářské Technicko-ekonomické Informace 54(3): 5–10.Google Scholar
  16. Hynes H.B.N. 1970. The Ecology of Running Waters. Liverpool University Press, Liverpool, 555 pp. ISBN: 0802016898, 9780802016898Google Scholar
  17. Korn H. 1963. Studien zur Ökologie der Oligochaeten in der oberen Donau unter Berücksichtigung der Abwassereinwirkungen. Arch. Hydrobiol. 27(2): 131–182. DOI:  10.1127/agdonauforschung/1/1963/131 Google Scholar
  18. Krodkiewska M. 2005. The Oligochaeta communities in the benthos of artificially heated Rybnik dam reservoir (Poland). J. Freshwater Ecol. 20(1): 117–122. DOI:  10.1080/02705060.2005.9664944 CrossRefGoogle Scholar
  19. Krodkiewska M. & Michalik-Kucharz A. 2009. The bottom Oligochaeta communities in sand pits of different trophic status in Upper Silesia. Aquat. Ecol. 43(2): 437–444. DOI:  10.1007/s10452-008-9199-2 CrossRefGoogle Scholar
  20. Lakly M.B. & McArthur J.V. 2000. Macroinvertebrate recovery of a post-thermal stream: habitat structure and biotic function. Ecol. Engineer. 15(Suppl. 1): S87–S100. DOI:  10.1016/S0925-8574(99)00075-0 CrossRefGoogle Scholar
  21. Lehmkuhl D.M. 1972. Change in thermal regime as a cause of reduction of benthic fauna downstream of a reservoir. J. Fish. Res. Board Canada, 29(9): 1329–1332. DOI:  10.1139/f72-201 CrossRefGoogle Scholar
  22. Maret T.R., Cain D.J., MacCoy D.E. & Short T.M. 2003. Response of benthic invertebrate assemblages to metal exposure and bioaccumulation associated with hard-rock mining in northwesterm streams, USA. J. N. Am. Benthol. Soc. 22(4): 598–620.CrossRefGoogle Scholar
  23. Martínez-Ansemil E. & Collado R. 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334(1): 73–83. DOI:  10.1007/BF00017355 CrossRefGoogle Scholar
  24. Miliša M., Živković V. & Habdija I. 2010. Destructive effect of quarry effluent on life in a mountain stream. Biologia 65(3): 520–526. DOI:  10.2478/s11756-010-0044-4 CrossRefGoogle Scholar
  25. Nedeau E.J., Merritt R.W. & Kaufman M.G. 2003. The effect of an industrial effluent on an urban stream benthic community: water quality vs. habitat quality. Environ. Pollut. 123(1): 1–13. DOI:  10.1016/S0269-7491(02)00363-9 CrossRefGoogle Scholar
  26. Nijboer R.C., Wetzel M.J. & Verdonschot P.F.M. 2004. Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia 520(1–3): 127–141. DOI:  10.1023/B:HYDR.0000027732.88238.61 CrossRefGoogle Scholar
  27. Preston R.L. 2009. Osmoregulation in Annelids, pp. 135–160. In: Evans D.H. (ed.), Osmotic and Ionic Regulation: Cells and Animals, CRC Press, Boca Raton, 606 pp. ISBN: 9780849380303Google Scholar
  28. Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H. & Wagner H. 2011. vegan: Community Ecology Package. R package version 2.0-2. http://CRAN.R-project.org/package=vegan Google Scholar
  29. Quinn J.M. & Hickey C.W. 1990. Characterisation and classification of benthic invertebrate communities in 88 New Zealand rivers in relation to environmental factors. N. Z. J. Mar. Freshwater Res. 24(3): 387–409. DOI:  10.1080/00288330.1990.9516432 CrossRefGoogle Scholar
  30. Quinn J.M., Steele G.L., Hickey C.W. & Vickers M.L. 1994. Upper thermal tolerances of twelve New Zealand stream invertebrate species. N. Z. J. Mar. Freshwater Res. 28(4): 391–397. DOI:  10.1080/00288330.1994.9516629 CrossRefGoogle Scholar
  31. R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  32. Saltveit S.J., Bremnes T. & Brittain J.E. 1994. Effect of a changed temperature regime on the benthos of a Norwegian regulated river. Regul. Rivers: Res. & Manage. 9(2): 93–102. DOI:  10.1002/rrr.3450090203 CrossRefGoogle Scholar
  33. Schenková J., Helešic J. & Jarkovsky J. 2006. Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanum (Oligochaeta, Annelida) in relation to environmental variables. Biologia 61(5): 517–523. DOI:  10.2478/s11756-006-0085-x CrossRefGoogle Scholar
  34. Schenková J., Komárek O. & Zahrádková S. 2001. Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia 463: 235–240. DOI:  10.1007/978-94-010-0597-524 CrossRefGoogle Scholar
  35. Schwank P. 1981. Turbellarien, Oligochaeten und Archianneliden des Breitenbachs und anderer oberhessischer Mittelgebirgsbäche. II. Die Systematik und Autökologie der einzelnen Arten. Schlitzer Produktionsbiologische Studien (43-2). Arch. Hydrobiol. Suppl. 62(1): 86–147.Google Scholar
  36. Straka M., Syrovátka V. & Helešic J. 2012. Temporal and spatial macroinvertebrate variance compared: crutial role of CPOM in a headwater stream. Hydrobiologia 686(1): 119–134. DOI:  10.1007/s10750-012-1003-6 CrossRefGoogle Scholar
  37. Syrovátka V., Schenková J. & Brabec K. 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fund. Appl. Limnol. / Arch. Hydrobiol. 174(1): 43–62. DOI:  10.1127/1863-9135/2009/0174-0043 CrossRefGoogle Scholar
  38. Taylor B.R. & Dykstra A.N. 2005. Effect of hot ground water on a small swamp-stream in Nova Scotia, Canada. Hydrobiologia 545(1): 129–144. DOI:  10.1007/s10750-005-2745-1 CrossRefGoogle Scholar
  39. Thomas P. & Liber K. 2001. An estimation of radiation doses to benthic invertebrates from sediments collected near a Canadian uranium mine. Environ. Int. 27(4): 341–353. DOI:  10.1016/S0160-4120(01)00085-X PubMedCrossRefGoogle Scholar
  40. Uzunov V., Košel V. & Sládeček V. 1988. Indicator value of freshwater Oligochaeta. Acta Hydrochim. Hydrobiol. 16(2): 173–186. DOI:  10.1002/aheh.19880160207 CrossRefGoogle Scholar
  41. Verdonschot P.F.M. 2006. Beyond masses and blooms: the indicative value of oligochaetes. Hydrobiologia 564: 127–142. DOI:  10.1007/1-4020-5368-1_13 CrossRefGoogle Scholar
  42. Voelz N.J., Poff N.L. & Ward J.V. 1994. Differential effects of a brief thermal disturbance on caddisflies (Trichoptera) in a regulated river. Am. Midl. Nat. 132(1): 173–182.CrossRefGoogle Scholar
  43. Wellborn G.A. & Robinson J.V. 1996. Effects of a thermal effluent on macroinvertebrates in a Central Texas Reservoir. Am. Midl. Nat. 136(1): 110–120.CrossRefGoogle Scholar
  44. Živić I., Marković Z. & Brajković M. 2006. Influence of the temperature regime on the composition of the macrozoobenthos community in a thermal brook in Serbia. Biologia 61(2): 179–191. DOI:  10.2478/s11756-006-0029-5 CrossRefGoogle Scholar
  45. Živić I., Živić M., Milošević D., Bjelanović K., Stanojlović S., Daljević R. & Marković Z. 2013. The effects of geothermal water inflow on longitudinal changes in benthic macroinvertebrate community composition of a temperate stream. J. Therm. Biol. 38(5): 255–263. DOI:  10.1016/j.jtherbio.2013.03.005 CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Sylvie Růžičková
    • 1
    Email author
  • Jana Schenková
    • 1
  • Veronika Weissová
    • 1
  • Jan Helešic
    • 1
  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations