, Volume 68, Issue 5, pp 1004–1009 | Cite as

Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells

  • Elanur AydinEmail author
  • Hasan Türkez
  • Fatime Geyikoğlu
Section Cellular and Molecular Biology


α-Pinene, an organic monoterpene, is found in essential oils of pine and coniferous trees. To date, although various biological activities of α-pinene have been demonstrated, its neurotoxicity has never been explored. Therefore in this study, we aimed to describe in vitro antiproliferative and/or cytotoxic properties by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, genotoxic damage potentials by single cell gel electrophoresis, and oxidative effects by total antioxidant capacity (TAC) and total oxidative stress (TOS) analysis of α-pinene. Statistical analysis of MTT assay results indicated significant (p < 0.05) decreases of the cell proliferation rates in healthy neurons treated with α-pinene at only 400 mg/L, while significant decreases were observed in N2a cells at 100, 200 and 400 mg/L. On the other hand, the mean values of the total scores of cells showing DNA damage were not found significantly different from the control values on both cells. In addition, our results indicated that 10 and 25 mg/L of α-pinene treatment caused increases of TAC levels in primary rat neurons without any alterations of its level in N2a cells. However, α-pinene treatments at higher doses led to increases of TOS levels in both cell types. Overall our results suggest that α-pinene is of a limited therapeutic use as an anticancer agent.

Key words

alpha-pinene comet assay MTT assay neurotoxicity N2a neuroblastoma cell line oxidative status 



3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide




single cell gel electrophoresis


total antioxidant capacity


total oxidative stress


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agullo G., Gamet-Payrastre L., Manenti S., Viala C., Remesy C., Chap H. & Payrastre B. 1997. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem. Pharmacol. 53: 1649–1657.PubMedCrossRefGoogle Scholar
  2. Bae G.S., Park K.C., Choi S.B., Jo I.J., Choi M.O., Hong S.H., Song K., Song H.J. & Park S.J. 2012. Protective effects of α-pinene in mice with cerulein-induced acute pancreatitis. Life Sci. 91: 866–871.PubMedCrossRefGoogle Scholar
  3. Bayrak O., Seckiner I., Erturhan S., Aydin A. & Yagci F. 2012. Adult intrarenal neuroblastoma presenting as renal cell carcinoma. Can. Urol. Assoc. J. 6: E144–E146.PubMedCrossRefGoogle Scholar
  4. Bourgou S., Pichette A., Lavoie S., Marzouk B. & Legault J. 2012. Terpenoids isolated from Tunisian Nigella sativa L. essential oil with antioxidant activity and the ability to inhibit nitric oxide production. Flavour Fragr. J. 27: 69–74.CrossRefGoogle Scholar
  5. Brodeur G.M. 2003. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3: 203–216.PubMedCrossRefGoogle Scholar
  6. Brusselmans K., Vrolix R., Verhoeven G. & Swinnen J.V. 2005. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 280: 5636–5645.PubMedCrossRefGoogle Scholar
  7. Cadet J.L. & Brannock C. 1998. Free radicals and the pathobiology of brain dopamine systems. Neurochem. Int. 32: 117–131.PubMedCrossRefGoogle Scholar
  8. Cai Y., Luo Q., Sun M. & Corke H. 2004. Antioxidant activity and phenolic compounds of 112 traditional chinese medicinal plants associated with anticancer. Life Sci. 74: 2157–2184.PubMedCrossRefGoogle Scholar
  9. Charles D.J. & Simon J.E. 1990. Comparison of extraction methods for the rapid determination of essential oil content and composition of basil. J. Amer. Soc. Hort. Sci. 115: 458–462.Google Scholar
  10. Chen D., Daniel K.G., Chen M.S., Kuhn D.J., Landis-Piwowar K.R. & Dou Q.P. 2005. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol. 69: 1421–1432.PubMedCrossRefGoogle Scholar
  11. Chen Z.P., Schell J.B., Ho C.T. & Chen K.Y. 1998. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett. 129: 173–179.PubMedCrossRefGoogle Scholar
  12. Clarke M.F. 2004. At the root of brain cancer. Nature 432: 281–282.PubMedCrossRefGoogle Scholar
  13. Constantinou A., Mehta R., Runyan C., Rao K., Vaughan A. & Moon R. 1995. Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J. Nat. Prod. 58: 217–225.PubMedCrossRefGoogle Scholar
  14. Daikhin Y. & Yudkoff M. 2000. Compartmentation of brain glutamate metabolism in neurons and glia. J. Nutr. 130: 1026–1031.Google Scholar
  15. Das G.P., Shaik A.P. & Jamil K. 2006. Cytotoxicity and genotoxicity induced by the pesticide profenofos on cultured human peripheral blood lymphocytes. Drug Chem. Toxicol. 29: 313–322.CrossRefGoogle Scholar
  16. Dorman H.J.D., Figueiredo A.C., Barroso J.G. & Deans S.G. 2000. In vitro evaluation of antioxidant activity of essential oils and their components. Flavour. Fragr. J. 15: 12–16.CrossRefGoogle Scholar
  17. Erel O. 2004. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 37: 112–119.PubMedCrossRefGoogle Scholar
  18. Erel O. 2005. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 38: 1103–1111.PubMedCrossRefGoogle Scholar
  19. Gminski R., Tang T. & Mersch-Sundermann V. 2010. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards. Toxicol. Lett. 196: 33–41.PubMedCrossRefGoogle Scholar
  20. Gomes-Carneiro M.R., Viana M.E., Felzenszwalb I. & Paumgartten F.J. 2005. Evaluation of β-myrcene, α-terpinene and (+)- and (−)-α-pinene in the Salmonella/microsome assay. Food Chem. Toxicol. 43: 247–252.PubMedCrossRefGoogle Scholar
  21. Halliwell B. 2006. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97: 1634–1658.PubMedCrossRefGoogle Scholar
  22. Heaton P.R., Ransley R. & Charlton C.J. 2002. Application of single-cell gel electrophoresis (comet) assay for assessing levels of DNA damage in canine and feline leukocytes. J. Nutr. 132: 1598S–1603S.PubMedGoogle Scholar
  23. Heck J.E., Ritz B., Hung R.J., Hashibe M. & Boffetta P. 2009. The epidemiology of neuroblastoma: a review. Paediatr. Perinat. Epidemiol. 23: 125–143.PubMedCrossRefGoogle Scholar
  24. Him A., Ozbek H., Turel I. & Oner A.C. 2008. Antinociceptive activity of α-pinene and fenchone. Pharmacol. Online 3: 363–369.Google Scholar
  25. Ho C.L. & Su Y.C. 2012. Composition, antioxidant and antimicrobial activities of the leaf essential oil of Machilus japonica from Taiwan. Nat. Prod. Commun. 7: 109–112.PubMedGoogle Scholar
  26. Kazi A., Wang Z., Kumar N., Falsetti S.C., Chan T.H. & Dou Q.P. 2004. Structure activity relationships of synthetic analogs of (−)-epigallocatechin-3-gallate as proteasome inhibitors. Anticancer Res. 24: 943–954.PubMedGoogle Scholar
  27. Kizilian N., Wilkins R.C. & Reinhardt P. 1999. Silver stained comet assay for detection of apoptosis. Biotechniques 27: 926–930.PubMedGoogle Scholar
  28. Kusano C. & Ferrari B. 2008. Total antioxidant capacity: a biomarker in biomedical and nutritional studies. J. Cell Mol. Biol. 7: 1–15.Google Scholar
  29. Lepley D.M., Li B., Birt D.F. & Pelling J.C. 1996. The chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes. Carcinogenesis 17: 2367–2375.PubMedCrossRefGoogle Scholar
  30. Lima C.F., Carvalho F., Fernandes E., Bastos M.L., Santos-Gomes P.C., Fernandes-Ferreira M. & Pereira-Wilson C. 2004. Evaluation of toxic/protective effects of the essential oil of Salvia officinalis on freshly isolated rat hepatocytes. Toxicol. In Vitro 18: 457–465.PubMedCrossRefGoogle Scholar
  31. Linares D., Fontanille P. & Larroche C. 2009. Exploration of α-pinene degradation pathway of Pseudomonas rhodesiae CIP 107491. Application to novalic acid production in a bioreactor. Food Res. Int. 42: 461–469.CrossRefGoogle Scholar
  32. Loza-Tavera H. 1999. Monoterpenes in essential oils. Biosynthesis and properties. Adv. Exp. Med. Biol. 464: 49–62.PubMedCrossRefGoogle Scholar
  33. Maidment S.L. & Pilkington GJ. 2001. Brain cancers. Encyclopaedia of Life Sciences Nature Publishing Group/Macmillan (Invited Reference Work for Electronic Publication).Google Scholar
  34. Maris J.M. & Matthay K.K. 1999. Molecular biology of neuroblastoma. J. Clin. Oncol. 17: 2264–2279.PubMedGoogle Scholar
  35. Matsuo A.L., Figueiredo C.R., Arruda D.C., Pereira F.V., Scutti J.A.B., Massaoka M.H., Travassos L.R., Sartorelli P. & Lago J.H.G. 2011. α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun. 411: 449–454.PubMedCrossRefGoogle Scholar
  36. Mecocci P., Mac Garvey U. & Beal M.F. 1994. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann. Neurol. 36: 747–751.PubMedCrossRefGoogle Scholar
  37. Montes M., Veiga M.C. & Kennes C. 2010. Two-liquid-phase mesophilic and thermophilic biotrickling filters for the biodegradation of α-pinene. Bioresour. Technol. 101: 9493–9499.PubMedCrossRefGoogle Scholar
  38. Mueller W.P., Coppenrath E. & Pfluger T. 2013. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr. Radiol. 43: 418–427.PubMedCrossRefGoogle Scholar
  39. Nijholt W.W. & McMullen L.H. 1980. Pine oil prevents mountain pine beetle attack on living lodgepole pine trees. Bimonthly Research Notes 36: 1–2.Google Scholar
  40. Okumura N., Yoshida H., Nishimura Y., Kitagishi Y. & Matsuda S. 2012. Terpinolene, a component of herbal sage, downregulates AKT1 expressionin K562 cells. Oncol. Lett. 3: 321–324.PubMedGoogle Scholar
  41. Ozkan A., Erdogan A., Sokmen M., Tugrulay S. & Unal O. 2010. Antitumoral and antioxidant effect of essential oils and in vitro antioxidant properties of essential oils and aqueous extracts from Salvia pisidica. Biologia 65: 990–996.CrossRefGoogle Scholar
  42. Özen T. & Kinalioğlu K. 2008. Determination of antioxidant activity of various extracts of Parmelia saxatilis. Biologia 63: 211–216.CrossRefGoogle Scholar
  43. Plaumann B., Fritsche M., Rimpler H., Brandner G. & Hess RD. 1996. Flavonoids activate wild-type P53. Oncogene 13: 1605–1614.PubMedGoogle Scholar
  44. Rene E.R., Lopez M.E., Veiga M.C. & Kennes C. 2010. Steadyand transient-state operation of a two-stage bioreactor for the treatment of a gaseous mixture of hydrogen sulphide, methanol and α-pinene. J. Chem. Technol. Biotechnol. 85: 336–348.CrossRefGoogle Scholar
  45. Rupar-Gadd K., Bagherpour M.B., Holmstedt G., Welander U. & Sanati M. 2006. Solid phase micro extraction fibers, calibration for use in biofilter applications. Biochem. Eng. J. 31: 107–112.CrossRefGoogle Scholar
  46. Saleha Banu B., Dana Devi K. & Mahboob M. 2000. In vivo genotoxic effect of zinc sulfate in mouse peripheral blood leukocytes using comet assay. Drug Chem. Toxicol. 24: 63–73.CrossRefGoogle Scholar
  47. Saverini M., Catanzaro I., Sciandrello G., Avellone G., Indelicato S., Marci G. & Palmisano L. 2012. Genotoxicity of Citrus wastewater in prokaryotic and eukaryotic cells and efficiency of heterogeneous photocatalysis by TiO2. J. Photochem. Photobiol. B 108: 8–15.PubMedCrossRefGoogle Scholar
  48. Shon M.Y., Choi S.D., Kahng G.G., Nam S.H. & Sung N.J. 2004. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem. Toxicol. 42: 659–666.PubMedCrossRefGoogle Scholar
  49. Simonsen J.L. 1957. The terpenes (2nd Edition), Cambridge University Press, Cambridge, 105-191 pp.Google Scholar
  50. Singh D.K. & Lippman S.M. 1998. Cancer chemoprevention part 1: retinoids and carotenoids and other classic antioxidants. Oncology 12: 1643–1660.PubMedGoogle Scholar
  51. Singh H.P., Mittal S., Kaur S., Batish D.R. & Kohli R.K. 2009. Characterization and antioxidant activity of essential oils from fresh and decaying leaves of Eucalyptus tereticornis. J. Agric. Food Chem. 57: 6962–6966.PubMedCrossRefGoogle Scholar
  52. Singh N.P., McCoy M.T. & Tice R.R. 1998. A simple technique for quantitation of low level of DNA damage in individual cells. Exp. Cell Res. 17: 184–191.Google Scholar
  53. Tice R.R., Agurell E. & Anderson D. 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35: 206–221.PubMedCrossRefGoogle Scholar
  54. Turkez H. 2011. The role of ascorbic acid on titanium dioxideinduced genetic damage assessed by the comet assay and cytogenetic tests. Exp. Toxicol. Pathol. 63: 453–457.PubMedCrossRefGoogle Scholar
  55. Turkez H. & Aydin E. 2012. Anti-genotoxic role of eicosapentaenoic acid against imazalil-induced DNA damage in vitro. Toxicol. Ind. Health (in press); DOI:10.1177/0748233711433943.Google Scholar
  56. Turkez H. & Geyikoglu F. 2010. Boric acid: a potential chemoprotective agent against aflatoxin B(1) toxicity in human blood. Cytotechnology 62: 157–165.PubMedCrossRefGoogle Scholar
  57. Turkez H., Geyikoglu F., Dirican E. & Tatar A. 2012. In vitro studies on chemoprotective effect of borax against aflatoxin B1-induced genetic damage in human lymphocytes. Cytotechnology 64: 607–612.PubMedCrossRefGoogle Scholar
  58. Turner S.D., Tinwell H., Piegorsch W., Schmezer P. & Ashby J. 2001. The male rat carcinogens limonene and sodium saccharin are not mutagenic to male big blue rats. Mutagenesis 16: 329–332.PubMedCrossRefGoogle Scholar
  59. Wang W., Li N., Luo M., Zu Y. & Efferth T. 2012. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 17: 2704–2713.Google Scholar
  60. Wang W., Wu N., Zu Y.G. & Fu Y.J. 2008. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 108: 1019–1022.Google Scholar
  61. Wei A. & Shibamoto T. 2007. Antioxidant activities and volatile constituents of various essential oils. J. Agric. Food Chem. 55: 1737–1742.PubMedCrossRefGoogle Scholar
  62. Wu C.S., Chen Y.J., Chen J.J., Shieh J.J., Huang C.H., Lin P.S., Chang G.C., Chang J.T. & Lin C.C. 2012. Terpinen-4-ol induces apoptosis in human nonsmall cell lung cancer in vitro and in vivo. Evid. Based Complement. Alternat. Med., Article ID: 818261.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Elanur Aydin
    • 1
    Email author
  • Hasan Türkez
    • 2
  • Fatime Geyikoğlu
    • 1
  1. 1.Department of Biology, Faculty of ScienceAtatürk UniversityErzurumTurkey
  2. 2.Department of Molecular Biology and Genetics, Faculty of ScienceErzurum Technical UniversityErzurumTurkey

Personalised recommendations