Biologia

, Volume 67, Issue 3, pp 546–560 | Cite as

Measuring the host specificity of plant-feeding mites based on field data — a case study of the Aceria species

Full Paper Zoology

Abstract

For the majority of eriophyoid species, host ranges have been established purely on the basis of collection records, usually without quantitative data. The aim of this study was to: (1) quantitatively examine published literature to explore whether relevant analyses of field-collected quantitative data were used to assess host specificity of herbivores; (2) propose a protocol for data analysis that could be applied to plant-feeding mites; (3) analyse host specificity of the grass-feeding Aceria species as a case study. Field data were collected in Central and Northern Europe over a period of 11 years, and included 73 grass species. For the eight Aceria species found, infestation parameters and host specificity indexes were assessed. Accumulation curves were calculated to study how the sampling effort influenced estimates of host specificity indexes. A literature analysis showed that among the studies that declared an aim of estimating the host range only 56% of them applied any quantitative analysis or informed on estimation reliability. The analysis of field-collected data and its interpretation showed the most complete and reliable conclusions about the host specificity of Aceria species when all indices were considered and, if available, other information about the mite’s ecology and biology. It was shown that estimates of host specificity could be strongly affected by sampling effort, and that several hundreds of samples should be collected for measuring the host specificity of grass-infesting mites, at least. Recommendations regarding host specificity estimation on the basis of field data are given.

Key words

Eriophyoidea host range infestation parameters normalized Rohde index Rohde index sampling effort taxonomic index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal A.A., Vala F. & Sabelis M.W. 2002. Induction of preference and performance after acclimation to novel hosts in a phytophagous spider mite: adaptive plasticity? Am. Nat. 159(5): 553–565. DOI: 10.1086/339463PubMedCrossRefGoogle Scholar
  2. Amrine J., Stasny T. & Flechtmann C. 2003. Revised Keys to the World Genera of the Eriophyoidea (Acari: Prostigmata). Indira Publishing House, West Bloomfield, Michigan, 789 pp. ISBN: 0-930337-20-4Google Scholar
  3. Awmack C.S. & Leather S.R. 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47(1): 817–844. DOI: 10.1146/annurev.ento.47.091201.145300PubMedCrossRefGoogle Scholar
  4. Britton J.R., Jackson M.C. & Harper D.M. 2009. Ligula intestinalis (Cestoda: Diphyllobothriidae) in Kenya: a field investigation into host specificity and behavioural alterations. Parasitology 136(11): 1367. DOI: 10.1017/S003118200999059XPubMedCrossRefGoogle Scholar
  5. Carew M., Schiffer M., Umina P., Weeks A. & Hoffmann A. 2009. Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bull. Entomol. Res. 99(5): 479–486. DOI: 10.1017/S0007485308006512PubMedCrossRefGoogle Scholar
  6. Chapman A. 2009. Numbers of living species in Australia and the World Report. Second Ed., 80 pp. ISBN: 978 0 642 56860 1. http://www.environment.gov.au/biodiversity/abrs/publications/other/species-numbers/2009/index.html (accessed 04.07.2010)
  7. Chapman R.F. 2003. Contact chemoreception in feeding by phytophagous insects. Annu. Rev. Entomol. 48: 455–484. DOI: 10.1146/annurev.ento.48.091801.112629PubMedCrossRefGoogle Scholar
  8. Davison A.C. & Hinkley D.V. 1997 Bootstrap Methods and Their Application. Cambridge University Press, Cambridge, 594 pp. ISBN: 0521574714, 9780521574716Google Scholar
  9. de Lillo E., Craemer C., Amrine J.W. & Nuzzaci G. 2010. Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Exp. Appl. Acarol. 51(1–3): 283–307. DOI: 10.1007/s10493-009-9311-xPubMedCrossRefGoogle Scholar
  10. Diaz R., Overholt W.A., Cuda J.P., Pratt P.D. & Fox A. 2008. Host specificity of Ischnodemus variegatus, an herbivore of West Indian marsh grass (Hymenachne amplexicaulis). Bio-Control 54(2): 307–321. DOI: 10.1007/s10526-008-9188-3Google Scholar
  11. Dorai-Raj S. 2009. binom: Binomial Confidence Intervals For Several Parameterizations. http://CRAN.R-project.org/package=binom (accessed 04.07.2010)
  12. Dray S. & Dufour A. 2007. The ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 22(4): 1–20.Google Scholar
  13. Duyck P., Pavoine S., Tixier P., Chabrier C. & Quénéhervé P. 2009. Host range as an axis of niche partitioning in the plant-feeding nematode community of banana agroecosystems. Soil Biol. Biochem. 41(6): 1139–1145. DOI: 10.1016/j.soilbio.2009.02.020CrossRefGoogle Scholar
  14. Dyer L.A., Singer M.S., Lill J.T., Stireman J.O., Gentry G.L., Marquis R.J., Ricklefs R.E., Greeney H.F., Wagner D.L., Morais H.C., Diniz I.R., Kursar T.A. & Coley P.D. 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448(7154): 696–699. DOI: 10.1038/nature05884PubMedCrossRefGoogle Scholar
  15. Efron B. & Tibshirani R. 1993. An Introduction to the Bootstrap. Chapman and Hall/CRC, London, 456 pp. ISBN: 0-412-04231-2Google Scholar
  16. Gassmann A., Tosevski I. & Skinner L. 2008. Use of native range surveys to determine the potential host range of arthropod herbivores for biological control of two related weed species, Rhamnus cathartica and Frangula alnus. Biol. Control 45(1): 11–20. DOI: 10.1016/j.biocontrol.2007.12.004CrossRefGoogle Scholar
  17. Harvey T., Seifers D. & Martin T. 2001 Host range differences between two strains of wheat curl mites (Acari: Eriophyidae). J. Agric. Urban Entomol. 18(1): 35–41.Google Scholar
  18. Heinze K. 1952. Polyvinylalkohol-Lactophenol-Gemisch als Einbettungsmittel für Blattläuse. Naturwissenschaften 39(12): 285–286. DOI: 10.1007/BF00591256CrossRefGoogle Scholar
  19. Hellgren O., Pérez-Tris J. & Bensch S. 2009. A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology 90(10): 2840–2849. DOI: 10.1890/08-1059.1PubMedCrossRefGoogle Scholar
  20. Jaenike J. 1990. Host specialization in phytophagous insects. Annu. Rev. Ecol. Syst. 21(1): 243–273. DOI: 10.1146/annurev.es.21.110190.001331CrossRefGoogle Scholar
  21. Keifer H. 1969. Eriophyoid Studies C-3. Agricultural Research Service, U.S. Department of Agriculture, 24 pp.Google Scholar
  22. Louda S.M., Rand T.A., Russell F.L. & Arnett A.E. 2005. Assessment of ecological risks in weed biocontrol: Input from retrospective ecological analyses. Biol. Control 35(3): 253–264. DOI: 10.1016/j.biocontrol.2005.07.022CrossRefGoogle Scholar
  23. Lymbery A. 1989. Host specificity, host range and host preference. Parasitol. Today 5(9): 298–298. PubMed: 15463237PubMedCrossRefGoogle Scholar
  24. Magalhǎes S., Forbes M.R., Skoracka A., Osakabe M., Chevillon C. & McCoy K.D. 2007. Host race formation in the Acari. Exp. Appl. Acarol. 42(4): 225–238. DOI: 10.1007/s10493-007-9091-0PubMedCrossRefGoogle Scholar
  25. Malenke J.R., Johnson K.P. & Clayton D.H. 2009. Host specialization differentiates cryptic species of feather-feeding lice. Evolution 63(6): 1427–1438. DOI: 10.1111/j.1558-5646.2009.00642.xPubMedCrossRefGoogle Scholar
  26. Michalska K., Skoracka A., Navia D. & Amrine J.W. 2010. Behavioural studies on eriophyoid mites: an overview. Exp. Appl. Acarol. 51(1–3): 31–59. DOI: 10.1007/s10493-009-9319-2PubMedCrossRefGoogle Scholar
  27. Navia D., Ochoa R., Welbourn C. & Ferragut F. 2010. Adventive eriophyoid mites: a global review of their impact, pathways, prevention and challenges. Exp. Appl. Acarol. 51(1–3): 225–255. DOI: 10.1007/s10493-009-9327-2PubMedCrossRefGoogle Scholar
  28. Norris R.F. & Kogan M. 2005. Ecology of interactions between weeds and arthropods. Annu. Rev. Entomol. 50: 479–503. DOI: 10.1146/annurev.ento.49.061802.123218PubMedCrossRefGoogle Scholar
  29. Novotny V. & Basset Y. 2005. Host specificity of insect herbivores in tropical forests. Proc. R. Soc. Lond. B Biol. Sci. 272(1568): 1083–1090. DOI: 10.1098/rspb.2004.3023CrossRefGoogle Scholar
  30. Novotny V., Basset Y., Miller S.E., Weiblen G.D., Bremer B., Cizek L. & Drozd P. 2002. Low host specificity of herbivorous insects in a tropical forest. Nature 416: 841–844. DOI: 10.1038/416841aPubMedCrossRefGoogle Scholar
  31. Ødegaard F., Diserud O.H., Engen S. & Aagaard K. 2000. The magnitude of local host specificity for phytophagous insects and its implications for estimates of global species richness. Conserv. Biol. 14(4): 1182–1186. DOI: 10.1046/j.1523-1739.2000.99393.xCrossRefGoogle Scholar
  32. Oldfield G. 1996. Diversity and host plant specificity, pp. 199–216. In: Lindquist E.E., Sabelis M.W. & Bruin J. (eds), Eriophyoid Mites Their Biology, Natural Enemies and Control, Elsevier Science Publishing, Amsterdam. ISBN: 978-0-444-88628-6. DOI: 10.1016/S1572-4379(96)80011-XCrossRefGoogle Scholar
  33. Oldfield G. 2005. Biology of Gall-inducing Acari, pp. 35–57. In: Raman A., Schaefer C. & Withers T. (eds), Biology, Ecology and Evolution of Gall-inducing Arthropods, (2 Vols) Science Publishers, Inc., Enfield (NH), USA. ISBN: 1578082625, 978-1578082629Google Scholar
  34. Poulin R. 2007. Evolutionary ecology of parasites: (Second Edition) Princeton University Press, Princeton, 342 pp. ISBN: 9780691120850Google Scholar
  35. Poulin R. & Mouillot D. 2003. Host introductions and the geography of parasite taxonomic diversity. J. Biogeogr. 30(6): 837–845. DOI: 10.1046/j.1365-2699.2003.00868.xCrossRefGoogle Scholar
  36. Poulin R. & Mouillot D. 2005. Combining phylogenetic and ecological information into a new index of host specificity. J. Parasitol. 91(3): 511–514. PubMed: 16108540PubMedCrossRefGoogle Scholar
  37. Pratt P., Rayamajhi M., Center T., Tipping P. & Wheeler G. 2009. The ecological host range of an intentionally introduced herbivore: A comparison of predicted versus actual host use. Biol. Control 49(2): 146–153. DOI: 10.1016/j.biocontrol.2009.01.014CrossRefGoogle Scholar
  38. R Development Core Team. 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (accessed 07.07.2010)Google Scholar
  39. Raghu S., Drew R.A.I. & Clarke A.R. 2004. Influence of host plant structure and microclimate on the abundance and behavior of a tephritid fly. J. Insect Behav. 17(2): 179–190. DOI: 10.1023/B:JOIR.0000028568.90719.2aCrossRefGoogle Scholar
  40. Rohde K. & Rohde P. 2008. How to measure ecological host speci-ficity. Vie et Milieu-Life and Environment 58(2): 121–124.Google Scholar
  41. Sarkar D. 2008. Lattice: Multivariate Data Visualization with R. Springer, New York, 268 pp. ISBN: 0387759689, 978-0387759685Google Scholar
  42. Skoracka A. 2004. Eriophyoid mites from grasses in Poland (Acari: Eriophyoidea). Genus, Wroclaw, Suppl.: 1–205.Google Scholar
  43. Skoracka A., Smith L., Oldfield G., Cristofaro M. & Amrine J.W. 2010. Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. Exp. Appl. Acarol. 51(1–3): 93–113. DOI: 10.1007/s10493-009-9323-6PubMedCrossRefGoogle Scholar
  44. Smith L., de Lillo E. & Amrine J.W. 2010. Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research. Exp. Appl. Acarol. 51(1–3): 115–149. DOI: 10.1007/s10493-009-9299-2PubMedCrossRefGoogle Scholar
  45. Sukhareva S. 1977. Dva novikh vida chetyrekhnogikh kleshcheǐ (Acarina, Tetrapodili) so zlakov [Two new species of Tetrapodili (Acarina) from Gramineae]. Entomol. Obozr. 56: 704–706.Google Scholar
  46. Sukhareva S. 1983. Novye vidy chetyrekhnogikh kleshcheǐ roda Aceria Keif. (Acariformes, Tetrapodili) obitayushchikh na zlakah [New species of Eriophyid mites of the genus Aceria Keif. (Acariformes, Tetrapodili) living on grasses]. Entomol. Obozr. 62: 391–395.Google Scholar
  47. Sukhareva S. 1986. Novye vidy chetyrekhnogikh kleshcheǐ roda (Acariformes, Tetrapodili) obitayushchie na zlakah [New species of eriophyid mites (Acariformes: Tetrapodili) living on cereals]. Entomol. Obozr. 65: 850–855.Google Scholar
  48. Van Leeuwen T., Witters J., Nauen R., Duso C. & Tirry L. 2010. The control of eriophyoid mites: state of the art and future challenges. Exp. Appl. Acarol. 51: 205–224. DOI: 10.1007/978-90-481-9562-6 11PubMedCrossRefGoogle Scholar
  49. Walter G.H. & Benfield M.D. 1994. Temporal host plant use in three polyphagous Heliothinae, with special reference to Helicoverpa punctigera (Wallengren) (Noctuidae: Lepidoptera). Austral. Ecol. 19(4): 458–465. DOI: 10.1111/j.1442-9993. 1994.tb00512.xCrossRefGoogle Scholar
  50. Wickham H. 2007. Reshaping data with the Reshape Package. J. Stat. Softw. 21(12): 1–20.Google Scholar
  51. Wickham H. 2009. plyr: Tools for splitting, applying and combining data. http://CRAN.R-project.org/package=plyr (accessed 04.07.2010)
  52. Wilson E.O. 1992. The Diversity of Life. Harvard University Press, Cambridge, 424 pp. ISBN: 0674212983, 9780674212985Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland
  2. 2.Department of Avian Biology, Institute of Environmental Biology, Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations