Advertisement

Biologia

, Volume 67, Issue 2, pp 289–295 | Cite as

Karyological study in fifteen Leucocoryne taxa (Alliaceae)

  • Paola Jara-Arancio
  • Pedro Jara-Seguel
  • Claudio Palma-Rojas
  • Gina Arancio
  • Raul Moreno
Section Botany

Abstract

The karyotype of fifteen Leucocoryne taxa was studied, assessing characteristics such as chromosome morphology and size, secondary constriction location, and asymmetry level. Two groups of Leucocoryne taxa were described based on chromosome number (2n = 10 and 2n = 18) and karyotype asymmetry. The haploid karyotype formula for the group 2n = 10 was 3m + 2st (or 2t), whereas for the group 2n = 18 was 7m + 2st (or 2t). Such results corroborate the karyotype descriptions previously carried out for some taxa of the genus. Leucocoryne taxa showed a high resemblance in chromosome morphology, but inter-specific differences were found in mean chromosome size. These data and previous studies based on gross chromosome morphology support Crosa’s hypothesis, which suggests that the cytotype 2n = 10 is diploid and perhaps ancestral, whereas that the cytotype 2n = 18 is tetraploid but with an additional chromosome fusion being probably a derived status.

Key words

Leucocoryne karyotype morphology polyploidy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araneda L., Salas P. & Mansur L. 2004. Chromosome numbers in the chilean endemic genus Leucocoryne (Huilli). J. Am. Soc. Hortic. Sci. 129(1): 77–80.Google Scholar
  2. Bahamondes N. & Labarca V. 1994. Citogenética y probables mecanismos de evolución en especies de los géneros Leucocoryne y Pabellonia (Alliaceae). Tesis de Pedagogía en Biología, Universidad de La Serena, Chile.,85 pp.Google Scholar
  3. Buitendijk J. & Ramanna M. 1996. Giemsa C-banded karyotypes of eight species of Alstroemeria L. and some of their hybrids. Ann. Bot. 78: 449–457.CrossRefGoogle Scholar
  4. Buitendijk J., Boon F. & Ramanna M. 1997. Nuclear DNA contents in twelve species of Alstroemeria L. and some of their hybrids. Ann. Bot. 79: 343–353.CrossRefGoogle Scholar
  5. Cisternas M., Araneda L., García N. & Baeza C. 2010. Karyotypic studies in the Chilean genus Placea (Amaryllidaceae). Gayana Bot. 67: 198–205Google Scholar
  6. Contreras L.C. & Gutiérrez J.R. 1991. Effects of the subterranean herbivorous rodent Spalacopus cyanus on herbaceous vegetation in arid coastal Chile. Oecologia 87: 106–109.CrossRefGoogle Scholar
  7. Crosa O. 1988. Los cromosomas de nueve especies del género chileno Leucocoryne Lindley (Alliae-Alliavea). Bol. Inv. Agro. U. La República. Uruguay 17: 1–12.Google Scholar
  8. De La Cuadra C., Mansur L., Verdugo G. & Arriagada L. 2002. Deterioro de semillas de Leucocoryne spp. en función del tiempo de almacenaje. Agricultura Técnica 62: 46–55.Google Scholar
  9. Flory W. 1977. Overview of chromosomal evolution in the Amaryllidaceae. Nucleus 20: 70–88.Google Scholar
  10. Gouss J. 1949. Karyology of some South Smerican Amaryllidaceae. Plant Life (Herbertia) 5(4): 54–80.Google Scholar
  11. Hayward W. 1940. Leucocoryne as a pot plant. Herbertia 7: 205.Google Scholar
  12. Hoffmann A. 1978. Flora silvestre de Chile. Zona central. Ediciones Fundación Claudio Gay, Santiago, 225 pp.Google Scholar
  13. Kroon G. 1989. Evaluatie van Leucocoryne als nieuwe snijbloem. Prophyta 43: 15–16.Google Scholar
  14. Levan A., Fredga K. & Sandberg A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.CrossRefGoogle Scholar
  15. Levin D. 2002. The role of chromosome change in plant evolution. New York, Oxford University Press, 230 pp.Google Scholar
  16. Mansur L., Zöellner O. & Riedemann P. 2002. Leucocoryne un género nativo chileno y su uso como planta de jardín. Edición Reimco Limitada, Chile, 50 pp.Google Scholar
  17. Mansur L. & Cisterna M.A. 2005 Leucocoryne talinensis (Alliaceae), a new species from Chile. Novon 15: 324–326.Google Scholar
  18. Muñoz M. & Moreira M. 2000. Géneros endémicos de Monocotiledóneas, Chile. Bol. Mus. Nac. Hist. Nat. Chile. URL: http://www.MNHN.cl/apuntes/botanica/príncipealbot.htm. (Accessed March 01, 2011).
  19. Muñoz M., Riegel R., Seeman P., Peñailillo P., Schiappacasse F. & Nuñez J. 2011. Relaciones filogenéticas de Rhodolirium montanum Phil. y especies afines, basadas en secuencias nucleotídicas de la región ITS y análisis cariotípico. Gayana Bot. 68(1): 40–48.CrossRefGoogle Scholar
  20. Navarrete M., Secadas E. & Martin S. 1983. Análisis citofotométrico de las condiciones óptimas de la tinción de Feulgen. Morfología Normal y Patológica 7(2): 239–247.Google Scholar
  21. Ohkawa K., Kim H., Nitta E. & Fukazawa Y. 1996. Storage temperature and duration affect flower bud development, shoot emergence and flowering of Leucocoryne coquimbensis F. Phil. J. Am. Soc. Hortic. Sci. 123: 586–591.Google Scholar
  22. Ravenna P.F. 1973. Estudios sobre Alliaceae. Noticiero Museo Nacional de Historia Natural, Chile 200: 3–6.Google Scholar
  23. Ravenna P. 1978. Studies in the Alliaceae II. Plant Life 34: 130–151.Google Scholar
  24. Ravenna P.F., Teillier S., Macaya J., Rodríguez R. & Zoellner O. 1998. Categorías de conservación de plantas bulbosas natives de Chile. Bol. MNHN. 47: 47–68.Google Scholar
  25. Reig A.O. 1970. Ecological notes on the fossorial octodon rodent Spalacopus cyanus (Molina). J. Mamm. 51: 592–601.CrossRefGoogle Scholar
  26. Reeves A. 2001. MicroMeasure: A new computer program for the collection and analysis for the cytogenetic data. Genome 44: 239–443.CrossRefGoogle Scholar
  27. Romero-Zarco C. 1986. A new method for estimating karyotype asymmetry. Taxon 35: 526–530.CrossRefGoogle Scholar
  28. Salas P. & Mansur L. 2004. Gene flow between parents witn different ploidy levels in a natural population of Leucocoryne Lindley. J. Am Soc. Hortic. Sci. 129(6): 833–835.Google Scholar
  29. Sanso M. & Hunziker J. 1998. Karyological studies in Alstroemeria and Bomarea (Alstroemeriaceae). Hereditas 129: 67–74.CrossRefGoogle Scholar
  30. Sanso M. 2002. Chromosome studies in Andean taxa of Alstroemeria (Alstroemeriaceae). J. Linn. Soc. 138: 451–459.CrossRefGoogle Scholar
  31. Sato D. 1938. Karyotype alteration and phylogenies. IV. Karyotypes in Amaryllidaceae with special reference to the SATchromosomes. Cytologia 9: 203–242.CrossRefGoogle Scholar
  32. Soltis D., Soltis P., Pires J., Kovarik A., Tate J. & Mavrodiev E. 2004. Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. J. Linn. Soc. 82: 485–501.CrossRefGoogle Scholar
  33. Spotorno A. 1985. Conceptos y métodos en cariología descriptive y comparada. In: El núcleo, los cromosomas y la evolución. Fernández-Donoso (ed.), UNESCO, pp. 135–163.Google Scholar
  34. Squeo F.A., Arancio G. & Gutiérrez J.R. 2001. Libro Rojo de la flora nativa y de los sitios prioritarios para su conservación: Región de Coquimbo. Ediciones Universidad de La Serena, Chile, 372 pp.Google Scholar
  35. Stebbins G. 1971. Chromosomal evolution in higher plants. Edward Arnold Publishing, London, 215 pp.Google Scholar
  36. Verdugo G. & Texeria J. 2006. From wild to the table: Leucocoryne and Chloraea. Floriculture, Ornamental and Plant Biotechnology. Volume IV. Global Science Books. UK.Google Scholar
  37. Zoëllner O. 1972. El género Leucocoryne. Ann. MNHN 5: 9–83.Google Scholar
  38. Zuloaga F., Morrone O. & Belgrado M. 2008. Catálogo de las plantas vasculares del cono sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Editorial Missouri Botanical Garden Press. Iboda, Conicet Ancefn, 983 pp.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Paola Jara-Arancio
    • 1
    • 2
  • Pedro Jara-Seguel
    • 3
  • Claudio Palma-Rojas
    • 4
  • Gina Arancio
    • 4
  • Raul Moreno
    • 4
  1. 1.Instituto de Ecología y Biodiversidad (IEB), Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Departamento de Ciencias Biológicas Facultad de Ciencias Biológicas y Departamento de Ecología y Biodiversidad Facultad de Ecología y Recursos NaturalesUniversidad Andrés BelloSantiagoChile
  3. 3.Escuela de Ciencias Ambientales, Facultad de Recursos NaturalesUniversidad Católica de Temuco Casilla 15-DTemucoChile
  4. 4.Departamento de Biología, Facultad de CienciasUniversidad de La SerenaLa SerenaChile

Personalised recommendations