Comparison of dynamic responses of cellular metabolites in Escherichia coli to pulse addition of substrates
- 54 Downloads
Abstract
We conducted an integrated study of cell growth parameters, product formation, and the dynamics of intracellular metabolite concentrations using Escherichia coli with genes knocked out in the glycolytic and oxidative pentose phosphate pathway (PPP) for glucose catabolism. We investigated the same characteristics in the wild-type strain, using acetate or pyruvate as the sole carbon source. Dramatic effects on growth parameters and extracellular and intracellular metabolite concentrations were observed after blocking either glycolytic breakdown of glucose by inactivation of phosphoglucose isomerase (disruption of pgi gene) or pentose phosphate breakdown of glucose by inactivation of glucose-6-phosphate dehydrogenase (disruption of zwf gene). Reducing power (NADPH) was mainly produced through PPP when the pgi gene was knocked out, while NADPH was produced through the tricarboxylic acid (TCA) cycle by isocitrate dehydrogenase or NADP-linked malic enzyme when the zwf gene was knocked out. As expected, when the pgi gene was knocked out, intracellular concentrations of PPP metabolites were high and glycolytic and concentrations of TCA cycle pathway metabolites were low. In the zwf gene knockout, concentrations of PPP metabolites were low and concentrations of intracellular glycolytic and TCA cycle metabolites were high.
Key words
pulse addition dynamic response metabolic engineering gene knockout pgi mutant zwf mutant metabolite concentrationAbbreviations
- CER
CO2 evolution rate
- DCW
dry cell weight
- ED
Entner-Doudoroff
- EMP
Embden-Mayerhof-Paranas
- MEZ
malic enzyme
- OD
optical density
- OUR
oxygen uptake rate
- PGI
phosphoglucose isomerase
- PPP
pentose phosphate pathway
- TCA
tricarboxylic acid
- Yx/s
cell mass yield
Nomenclature: Enzymes
- 6PGDH
6-phosphogluconate dehydrogenase
- Eda
Entner-Douderoff aldolase
- Edd
Entner-Douderoff dehydralase
- Eno
enolase
- Fba
fructose-1,6-bisphosphate aldolase
- G6PDH
glucose-6-phosphate dehydrogenase
- GAPDH
glyceraldehyde-3-phosphate dehydrogenase
- GDH
glutamate dehydrogenase
- Hxk
hexokinase
- ICDH
isocitrate dehydrogenase
- LDH
lactate dehydrogenase
- MDH
malate dehydrogenase
- Mk
myokinase
- Pck
PEP carboxykinase
- Pgi
phosphoglucose isomerase
- Ppc
phosphoenolpyruvate carboxylase
- Pta
phosphotransacetylase
- PTS
phosphotransferase system
- Pyk
pyruvate kinase
- Rpe
ribose-phosphate epimerase
- Rpi
ribose-phosphate isomerase
- Tkt
transketolase
- Tpi
triosephosphate isomerase
- Tal
transaldolase
Metabolites
- 2PG
2-phosphoglycerate
- 6PG
6-phosphogluconate
- AcCoA
acetyl-coenzyme A
- ADP
adenosine diphosphate
- AKG
α-ketoglutarate
- AMP
adenosine monophosphate
- ATP
adenosine triphosphate
- DHAP
dihydroxyacetone phosphate
- E4P
erythrose-4-phosphate
- F6P
fructose-6-phosphate
- FBP
fructose-1,6-bisphosphate
- G6P
glucose-6-phosphate
- GAP
glyceraldehyde-3-phosphate
- ICT
isocitrate
- NAD
diphosphopyridindinucleotide, oxidized
- NADH
diphosphopyridindinucleotide, reduced
- NADP
diphosphopyridindinucleotide-phosphate, oxidized
- NADPH
diphosphopyridindinucleotide-phosphate, reduced
- OAA
oxaloacetate
- PEP
phosphoenolpyruvate
- PYR
pyruvate
- R5P
ribose-5-phosphate
- RU5P
ribulose-5-phosphate
- SUC
succinate
References
- Bailey J.E. 1991. Toward a science of metabolic engineering. Science 252: 1668–1675.PubMedCrossRefGoogle Scholar
- Bergmeyer H.U. 1984a. Methods of Enzymatic Analysis, 3rd Ed., Vol. 6. Verlag Chemie, Weinheim, Germany.Google Scholar
- Bergmeyer H.U. 1984b. Methods of Enzymatic Analysis, 3rd Ed., Vol. 7. Verlag Chemie, Weinheim, Germany.Google Scholar
- Berry A. 1996. Improving production of aromatic compounds in Escherchia coli by metabolic engineering. Trends Biotechnol. 14: 250–256.PubMedCrossRefGoogle Scholar
- Buchholz A., Jurlebaus J., Christian W. & Takors R. 2002. Metabolomics: quantification of intracellular metabolite dynamics. Biomol. Eng. 19: 5–15.PubMedCrossRefGoogle Scholar
- Buchholz A., Takors R. & Christian W. 2001. Quantification of intracellular metabolites in Escherichia coli using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal. Biochem. 295: 129–137.PubMedCrossRefGoogle Scholar
- Burgard A.P. & Maranas C.D. 2001. Probing the performance limits of the Escherichia coli metabolic network subject to additions or deletions. Biotechnol. Bioeng. 74: 364–375.PubMedCrossRefGoogle Scholar
- Canonaco F., Hess T.A., Heri S., Wang T., Szyperski T. & Sauer U. 2001. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol. Lett. 204: 247–252.PubMedCrossRefGoogle Scholar
- Choi I.Y., Sup K.I., Kim H.J. & Park J.W. 2003. Thermosensitive phenotype of Escherichia coli mutant lacking (NADP(+)-dependent isocitrate dehydrogenase. Redox Rep. 8: 51–56.PubMedCrossRefGoogle Scholar
- Datsenko K.A. & Wanner B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640–6645.PubMedCrossRefGoogle Scholar
- Dauner M., Storni T. & Sauer U. 2001. Bacillus subtilis metabolism and energetic in carbon-limited and excesscarbon chemostat culture. J. Bacteriol. 183: 7308–7317.PubMedCrossRefGoogle Scholar
- De Koning W. & Van Dam K. 1992. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. Biochem. 204: 118–123.PubMedCrossRefGoogle Scholar
- Emmerling M., Dauner M., Ponti A., Fiaux J., Hochuli M., Szyperski T., Wuthrich K., Bailey J.E. & Sauer U. 2002. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriol. 184: 152–164.PubMedCrossRefGoogle Scholar
- Choi G.G., Bae M.S., Ahn C.Y. & Oh H.M. 2008. Enhanced biomass and γ-linolenic acid production of mutant strain Arthrospira platensis. J. Microbiol. Biotechnol. 18: 539–544.PubMedGoogle Scholar
- Goel A.J., Ferrance J., Jeong J. & Attai A. 1993. Analysis of metabolic fluxes in batch and continuous cultures of Bacillus subtilis. Biotechnol. Bioeng. 42: 686–696.PubMedCrossRefGoogle Scholar
- Junke H., Krems B., Kotter P. & Entian K.D. 1996. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol. Gen. Genet. 252: 456–464.CrossRefGoogle Scholar
- Hoque M.A., Siddiquee K.A.Z. & Shimizu K. 2004. Metabolic control analysis of gene-knockout Escherichia coli based on the inverse flux analysis with experimental verification. Biochem. Eng. J. 19: 53–59.CrossRefGoogle Scholar
- Hoque M.A., Ushiyama H., Tomita M. & Shimizu K. 2005. Dynamic responses of the intracellular metabolite concentrations of the wild type and pykA Escherichia coli against pulse addition of glucose or NH3 under those limiting continuous cultures. Biochem. Eng. J. 26: 38–49.CrossRefGoogle Scholar
- Hua Q., Yang C., Baba T., Mori H. & Shimizu K. 2003. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knock-out. J. Bacteriol. 185: 7053–7067.PubMedCrossRefGoogle Scholar
- Hua Q., Yang C., Oshima T., Mori H. & Shimizu K. 2004. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl. Environ. Microbiol. 70: 2354–2366.PubMedCrossRefGoogle Scholar
- Hurlebaus J., Buchholz A., Alt W., Wiechert W. & Takors R. 2002. MMT-A pathway modeling tool for data from rapid sampling experiments. In Silico Biology 2: 467–484.PubMedGoogle Scholar
- Ishii N., Nakahigashi K., Baba T., Robert M., Soga T., Kanai A., Hirasawa T., Naba M., Hirai K., Hoque A., Ho P.Y., Kakazu Y., Sugawara K., Igarashi S., Harada S., Masuda T., Sugiyama N., Togashi T., Hasegawa M., Takai Y., Yugi K., Arakawa K., Iwata N., Toya Y., Nakayama Y., Nishioka T., Shimizu K., Mori H. & Tomita M. 2007. Multiple highthroughput analyses monitor the tesponse of E. coli to perturbations. Science 316: 593–597.PubMedCrossRefGoogle Scholar
- Larsson C.U., von Stokar U., Marison I. & Gustafsson L. 1993. Growth and metabolism of Saccharomyce cerevisiae in chemostat cultures under carbon, nitrogen, or carbon- and nitrogen-limiting conditions. J. Bacteriol. 175: 4809–4816.PubMedGoogle Scholar
- Lim S.J., Jung Y.M., Shin H.D. & Lee Y.H. 2002. Application of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J. Biosci. Bioeng. 93: 543–549.PubMedGoogle Scholar
- Lowenstein J.M. 1969. Methods in Enzymology, Vol. XIII, Citric Acid Cycle. Academic Press, New York.Google Scholar
- Matsudo M.C., Bezerra R.P., Sato S., Perego P., Converti A. & Carvalho J.C.M. 2009. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem. Eng. J. 43: 52–57.CrossRefGoogle Scholar
- Park S.J., Cotter P.A. & Gunsalus R.P. 1995. Regulation of malate dehydrogenase (mdh) gene expression in Echerichia coli in response to oxygen, carbon and heme availability. J. Bacteriol. 177: 6652–6656.PubMedGoogle Scholar
- Ping H., Leighton T., Ishkhanova G. & Kustu S. 1999. Sensing of nitrogen limited by Bacillus subtilis: comparison to enteric bacteria. J. Bacteriol. 181: 5042–5050.Google Scholar
- Piorreck M., Hinnerk K., Pohl B. & Pohl P. 1984. Biomass production, total protein chlorophylls, lipids and fatty acids of freshwater green and blue green algae under different nitrogen regimes. Phytochemistry 23: 207–216.CrossRefGoogle Scholar
- Rerenci T. 1999. Regulation by nutrient limitation. Curr. Opin. Microbiol. 2: 208–213.CrossRefGoogle Scholar
- Rizzi M., Baltes M., Theobald U. & Reuss M. 1997. In vivo analysis of metabolic dynamics in Saccharomces cerevisiae: II. Mathematical model. Biotechnol. Bioeng. 55: 592–608.CrossRefGoogle Scholar
- Sarkar D., Siddiquee K.A.Z., Arauzo-Bravo M.J., Oba T. & Shimizu K. 2008. Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli. Arch. Microbiol. 190: 559–571.PubMedCrossRefGoogle Scholar
- Sauer U., Lasko D.R., Fiaux J., Hochuli M., Glaser R., Szyperski T., Wuthrich K. & Bailey E.J. 1999. Metabolic flux ratio analysis of genetic environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181: 6679–6688.PubMedGoogle Scholar
- Schaefer U., Boos W., Takors R. & Weuster-Botz D. 1999. Automated sampling device for monitoring intracellular metabolite dynamics. Anal. Biochem. 270: 88–96.PubMedCrossRefGoogle Scholar
- Senior P.J. 1975. Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous-culture technique. J. Bacteriol. 123: 407–418.PubMedGoogle Scholar
- Siddiquee K.A.Z., Arauzo-Bravo M.J. & Shimizu K. 2004. Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl. Microbiol. Biotechnol. 63: 407–417.CrossRefGoogle Scholar
- Stephanopoulos G., Nielsen J. & Aristidou A. 1998. Metabolic Engineering: Principles and Methodologies. Academic Press, London.Google Scholar
- Tao H., Bausch C., Richmond C., Blatner R.F. & Conway T. 1999. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181: 6425–6440.PubMedGoogle Scholar
- Theobald U., Milinger W., Baltes M., Rizzi M. & Reuss M., 1997. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 55: 305–316.PubMedCrossRefGoogle Scholar
- Vaseghi S., Baumeister A., Rizzi M. & Reuss M. 1999. In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab. Eng. 1: 128–140.PubMedCrossRefGoogle Scholar
- Westerhoff H.V. 2001. The silicon cell, not dead but live! Metab. Eng. 3: 207–210.Google Scholar
- Weuster-Botz D. & de Graff A.A. 1996. Reaction engineering methods to study intracellular metabolite concentrations. Adv. Biochem. Eng. Biotechnol. 54: 75–108.PubMedGoogle Scholar
- Yang C., Hua Q., Baba T., Mori T. & Shimizu K., 2003. Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol. Bioeng. 84: 129–144.PubMedCrossRefGoogle Scholar
- Zhao J., Baba T., Mori H. & Shimizu K. 2004a. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Appl. Microbiol. Biotechnol. 64: 91–98.PubMedCrossRefGoogle Scholar
- Zhao J., Baba T., Mori H. & Shimizu K. 2004b. Effect of zwf gene knock-out on the metabolism of Escherichia coli grown on glucose or acetate. Metab. Eng. 6: 164–174.PubMedCrossRefGoogle Scholar