Biologia

, 66:954 | Cite as

Comparison of dynamic responses of cellular metabolites in Escherichia coli to pulse addition of substrates

  • Md. Aminul Hoque
  • Atefeh Taherian Fard
  • Mosfequr Rahman
  • Omar Alattas
  • Kohei Akazawa
  • Amir Feisal Merican
Section Cellular and Molecular Biology
  • 54 Downloads

Abstract

We conducted an integrated study of cell growth parameters, product formation, and the dynamics of intracellular metabolite concentrations using Escherichia coli with genes knocked out in the glycolytic and oxidative pentose phosphate pathway (PPP) for glucose catabolism. We investigated the same characteristics in the wild-type strain, using acetate or pyruvate as the sole carbon source. Dramatic effects on growth parameters and extracellular and intracellular metabolite concentrations were observed after blocking either glycolytic breakdown of glucose by inactivation of phosphoglucose isomerase (disruption of pgi gene) or pentose phosphate breakdown of glucose by inactivation of glucose-6-phosphate dehydrogenase (disruption of zwf gene). Reducing power (NADPH) was mainly produced through PPP when the pgi gene was knocked out, while NADPH was produced through the tricarboxylic acid (TCA) cycle by isocitrate dehydrogenase or NADP-linked malic enzyme when the zwf gene was knocked out. As expected, when the pgi gene was knocked out, intracellular concentrations of PPP metabolites were high and glycolytic and concentrations of TCA cycle pathway metabolites were low. In the zwf gene knockout, concentrations of PPP metabolites were low and concentrations of intracellular glycolytic and TCA cycle metabolites were high.

Key words

pulse addition dynamic response metabolic engineering gene knockout pgi mutant zwf mutant metabolite concentration 

Abbreviations

CER

CO2 evolution rate

DCW

dry cell weight

ED

Entner-Doudoroff

EMP

Embden-Mayerhof-Paranas

MEZ

malic enzyme

OD

optical density

OUR

oxygen uptake rate

PGI

phosphoglucose isomerase

PPP

pentose phosphate pathway

TCA

tricarboxylic acid

Yx/s

cell mass yield

Nomenclature: Enzymes

6PGDH

6-phosphogluconate dehydrogenase

Eda

Entner-Douderoff aldolase

Edd

Entner-Douderoff dehydralase

Eno

enolase

Fba

fructose-1,6-bisphosphate aldolase

G6PDH

glucose-6-phosphate dehydrogenase

GAPDH

glyceraldehyde-3-phosphate dehydrogenase

GDH

glutamate dehydrogenase

Hxk

hexokinase

ICDH

isocitrate dehydrogenase

LDH

lactate dehydrogenase

MDH

malate dehydrogenase

Mk

myokinase

Pck

PEP carboxykinase

Pgi

phosphoglucose isomerase

Ppc

phosphoenolpyruvate carboxylase

Pta

phosphotransacetylase

PTS

phosphotransferase system

Pyk

pyruvate kinase

Rpe

ribose-phosphate epimerase

Rpi

ribose-phosphate isomerase

Tkt

transketolase

Tpi

triosephosphate isomerase

Tal

transaldolase

Metabolites

2PG

2-phosphoglycerate

6PG

6-phosphogluconate

AcCoA

acetyl-coenzyme A

ADP

adenosine diphosphate

AKG

α-ketoglutarate

AMP

adenosine monophosphate

ATP

adenosine triphosphate

DHAP

dihydroxyacetone phosphate

E4P

erythrose-4-phosphate

F6P

fructose-6-phosphate

FBP

fructose-1,6-bisphosphate

G6P

glucose-6-phosphate

GAP

glyceraldehyde-3-phosphate

ICT

isocitrate

NAD

diphosphopyridindinucleotide, oxidized

NADH

diphosphopyridindinucleotide, reduced

NADP

diphosphopyridindinucleotide-phosphate, oxidized

NADPH

diphosphopyridindinucleotide-phosphate, reduced

OAA

oxaloacetate

PEP

phosphoenolpyruvate

PYR

pyruvate

R5P

ribose-5-phosphate

RU5P

ribulose-5-phosphate

SUC

succinate

References

  1. Bailey J.E. 1991. Toward a science of metabolic engineering. Science 252: 1668–1675.PubMedCrossRefGoogle Scholar
  2. Bergmeyer H.U. 1984a. Methods of Enzymatic Analysis, 3rd Ed., Vol. 6. Verlag Chemie, Weinheim, Germany.Google Scholar
  3. Bergmeyer H.U. 1984b. Methods of Enzymatic Analysis, 3rd Ed., Vol. 7. Verlag Chemie, Weinheim, Germany.Google Scholar
  4. Berry A. 1996. Improving production of aromatic compounds in Escherchia coli by metabolic engineering. Trends Biotechnol. 14: 250–256.PubMedCrossRefGoogle Scholar
  5. Buchholz A., Jurlebaus J., Christian W. & Takors R. 2002. Metabolomics: quantification of intracellular metabolite dynamics. Biomol. Eng. 19: 5–15.PubMedCrossRefGoogle Scholar
  6. Buchholz A., Takors R. & Christian W. 2001. Quantification of intracellular metabolites in Escherichia coli using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal. Biochem. 295: 129–137.PubMedCrossRefGoogle Scholar
  7. Burgard A.P. & Maranas C.D. 2001. Probing the performance limits of the Escherichia coli metabolic network subject to additions or deletions. Biotechnol. Bioeng. 74: 364–375.PubMedCrossRefGoogle Scholar
  8. Canonaco F., Hess T.A., Heri S., Wang T., Szyperski T. & Sauer U. 2001. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol. Lett. 204: 247–252.PubMedCrossRefGoogle Scholar
  9. Choi I.Y., Sup K.I., Kim H.J. & Park J.W. 2003. Thermosensitive phenotype of Escherichia coli mutant lacking (NADP(+)-dependent isocitrate dehydrogenase. Redox Rep. 8: 51–56.PubMedCrossRefGoogle Scholar
  10. Datsenko K.A. & Wanner B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640–6645.PubMedCrossRefGoogle Scholar
  11. Dauner M., Storni T. & Sauer U. 2001. Bacillus subtilis metabolism and energetic in carbon-limited and excesscarbon chemostat culture. J. Bacteriol. 183: 7308–7317.PubMedCrossRefGoogle Scholar
  12. De Koning W. & Van Dam K. 1992. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. Biochem. 204: 118–123.PubMedCrossRefGoogle Scholar
  13. Emmerling M., Dauner M., Ponti A., Fiaux J., Hochuli M., Szyperski T., Wuthrich K., Bailey J.E. & Sauer U. 2002. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriol. 184: 152–164.PubMedCrossRefGoogle Scholar
  14. Choi G.G., Bae M.S., Ahn C.Y. & Oh H.M. 2008. Enhanced biomass and γ-linolenic acid production of mutant strain Arthrospira platensis. J. Microbiol. Biotechnol. 18: 539–544.PubMedGoogle Scholar
  15. Goel A.J., Ferrance J., Jeong J. & Attai A. 1993. Analysis of metabolic fluxes in batch and continuous cultures of Bacillus subtilis. Biotechnol. Bioeng. 42: 686–696.PubMedCrossRefGoogle Scholar
  16. Junke H., Krems B., Kotter P. & Entian K.D. 1996. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol. Gen. Genet. 252: 456–464.CrossRefGoogle Scholar
  17. Hoque M.A., Siddiquee K.A.Z. & Shimizu K. 2004. Metabolic control analysis of gene-knockout Escherichia coli based on the inverse flux analysis with experimental verification. Biochem. Eng. J. 19: 53–59.CrossRefGoogle Scholar
  18. Hoque M.A., Ushiyama H., Tomita M. & Shimizu K. 2005. Dynamic responses of the intracellular metabolite concentrations of the wild type and pykA Escherichia coli against pulse addition of glucose or NH3 under those limiting continuous cultures. Biochem. Eng. J. 26: 38–49.CrossRefGoogle Scholar
  19. Hua Q., Yang C., Baba T., Mori H. & Shimizu K. 2003. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knock-out. J. Bacteriol. 185: 7053–7067.PubMedCrossRefGoogle Scholar
  20. Hua Q., Yang C., Oshima T., Mori H. & Shimizu K. 2004. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl. Environ. Microbiol. 70: 2354–2366.PubMedCrossRefGoogle Scholar
  21. Hurlebaus J., Buchholz A., Alt W., Wiechert W. & Takors R. 2002. MMT-A pathway modeling tool for data from rapid sampling experiments. In Silico Biology 2: 467–484.PubMedGoogle Scholar
  22. Ishii N., Nakahigashi K., Baba T., Robert M., Soga T., Kanai A., Hirasawa T., Naba M., Hirai K., Hoque A., Ho P.Y., Kakazu Y., Sugawara K., Igarashi S., Harada S., Masuda T., Sugiyama N., Togashi T., Hasegawa M., Takai Y., Yugi K., Arakawa K., Iwata N., Toya Y., Nakayama Y., Nishioka T., Shimizu K., Mori H. & Tomita M. 2007. Multiple highthroughput analyses monitor the tesponse of E. coli to perturbations. Science 316: 593–597.PubMedCrossRefGoogle Scholar
  23. Larsson C.U., von Stokar U., Marison I. & Gustafsson L. 1993. Growth and metabolism of Saccharomyce cerevisiae in chemostat cultures under carbon, nitrogen, or carbon- and nitrogen-limiting conditions. J. Bacteriol. 175: 4809–4816.PubMedGoogle Scholar
  24. Lim S.J., Jung Y.M., Shin H.D. & Lee Y.H. 2002. Application of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J. Biosci. Bioeng. 93: 543–549.PubMedGoogle Scholar
  25. Lowenstein J.M. 1969. Methods in Enzymology, Vol. XIII, Citric Acid Cycle. Academic Press, New York.Google Scholar
  26. Matsudo M.C., Bezerra R.P., Sato S., Perego P., Converti A. & Carvalho J.C.M. 2009. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem. Eng. J. 43: 52–57.CrossRefGoogle Scholar
  27. Park S.J., Cotter P.A. & Gunsalus R.P. 1995. Regulation of malate dehydrogenase (mdh) gene expression in Echerichia coli in response to oxygen, carbon and heme availability. J. Bacteriol. 177: 6652–6656.PubMedGoogle Scholar
  28. Ping H., Leighton T., Ishkhanova G. & Kustu S. 1999. Sensing of nitrogen limited by Bacillus subtilis: comparison to enteric bacteria. J. Bacteriol. 181: 5042–5050.Google Scholar
  29. Piorreck M., Hinnerk K., Pohl B. & Pohl P. 1984. Biomass production, total protein chlorophylls, lipids and fatty acids of freshwater green and blue green algae under different nitrogen regimes. Phytochemistry 23: 207–216.CrossRefGoogle Scholar
  30. Rerenci T. 1999. Regulation by nutrient limitation. Curr. Opin. Microbiol. 2: 208–213.CrossRefGoogle Scholar
  31. Rizzi M., Baltes M., Theobald U. & Reuss M. 1997. In vivo analysis of metabolic dynamics in Saccharomces cerevisiae: II. Mathematical model. Biotechnol. Bioeng. 55: 592–608.CrossRefGoogle Scholar
  32. Sarkar D., Siddiquee K.A.Z., Arauzo-Bravo M.J., Oba T. & Shimizu K. 2008. Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli. Arch. Microbiol. 190: 559–571.PubMedCrossRefGoogle Scholar
  33. Sauer U., Lasko D.R., Fiaux J., Hochuli M., Glaser R., Szyperski T., Wuthrich K. & Bailey E.J. 1999. Metabolic flux ratio analysis of genetic environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181: 6679–6688.PubMedGoogle Scholar
  34. Schaefer U., Boos W., Takors R. & Weuster-Botz D. 1999. Automated sampling device for monitoring intracellular metabolite dynamics. Anal. Biochem. 270: 88–96.PubMedCrossRefGoogle Scholar
  35. Senior P.J. 1975. Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous-culture technique. J. Bacteriol. 123: 407–418.PubMedGoogle Scholar
  36. Siddiquee K.A.Z., Arauzo-Bravo M.J. & Shimizu K. 2004. Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl. Microbiol. Biotechnol. 63: 407–417.CrossRefGoogle Scholar
  37. Stephanopoulos G., Nielsen J. & Aristidou A. 1998. Metabolic Engineering: Principles and Methodologies. Academic Press, London.Google Scholar
  38. Tao H., Bausch C., Richmond C., Blatner R.F. & Conway T. 1999. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181: 6425–6440.PubMedGoogle Scholar
  39. Theobald U., Milinger W., Baltes M., Rizzi M. & Reuss M., 1997. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 55: 305–316.PubMedCrossRefGoogle Scholar
  40. Vaseghi S., Baumeister A., Rizzi M. & Reuss M. 1999. In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab. Eng. 1: 128–140.PubMedCrossRefGoogle Scholar
  41. Westerhoff H.V. 2001. The silicon cell, not dead but live! Metab. Eng. 3: 207–210.Google Scholar
  42. Weuster-Botz D. & de Graff A.A. 1996. Reaction engineering methods to study intracellular metabolite concentrations. Adv. Biochem. Eng. Biotechnol. 54: 75–108.PubMedGoogle Scholar
  43. Yang C., Hua Q., Baba T., Mori T. & Shimizu K., 2003. Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol. Bioeng. 84: 129–144.PubMedCrossRefGoogle Scholar
  44. Zhao J., Baba T., Mori H. & Shimizu K. 2004a. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Appl. Microbiol. Biotechnol. 64: 91–98.PubMedCrossRefGoogle Scholar
  45. Zhao J., Baba T., Mori H. & Shimizu K. 2004b. Effect of zwf gene knock-out on the metabolism of Escherichia coli grown on glucose or acetate. Metab. Eng. 6: 164–174.PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Md. Aminul Hoque
    • 1
    • 2
    • 3
  • Atefeh Taherian Fard
    • 1
  • Mosfequr Rahman
    • 3
  • Omar Alattas
    • 4
  • Kohei Akazawa
    • 2
  • Amir Feisal Merican
    • 1
  1. 1.Centre of Research in Computational Sciences and Informatics in Biology, Biodiversity, Environment, Agriculture and Healthcare (CRYSTAL), Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Division of Information Science and Biostatistics, Department of Medical InformaticsNiigata University Medical and Dental HospitalNiigataJapan
  3. 3.Faculty of ScienceRajshahi UniversityRajshahiBangladesh
  4. 4.Centre of Excellence in Biotechnology ResearchKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations