Advertisement

Biologia

, 66:1140 | Cite as

Analysis of meristic and mitochondrial DNA variation in Syngnathus abaster (Teleostea: Syngnathidae) from two western Mediterranean lagoons

  • Hajer Ben Alaya
  • Daria Sanna
  • Marco Casu
  • Francesca Biagi
  • Paolo Francalacci
  • Marcella Carcupino
  • René Galzin
  • Jean-Pierre Quignard
  • Monia Trabelsi
Section Zoology
  • 90 Downloads

Abstract

Syngnathus abaster is a euryhaline pipefish distributed in the Mediterranean, Black Sea, and the north-eastern Atlantic. Although its populations are characterised by high morphological plasticity, neither congruent information about the morphological differentiation of S. abaster populations from the Mediterranean lagoons is available, nor population genetic surveys have been so far performed. In this context, the aims of our study were as follow: i) to describe the variation at nine meristic characters of S. abaster from two western Mediterranean brackish-water areas: the Tunis north lagoon (Tunisia) and the Mauguio lagoon (France); ii) to analyse sequences of four mitochondrial DNA regions in order to evaluate the occurrence of genetic variation between the two areas, if any. The morphological survey revealed a subdivision into two distinct groups: the first included the Tunisian specimens, the second the French ones. Genetic analysis evidenced the occurrence of a sharp genetic structuring with high levels of genetic differentiation between Tunisian and French S. abaster populations. Results suggest that the evolutionary forces driven by the different biogeographical and ecological conditions of the two Mediterranean brackish-water areas have boosted the morphological and genetic divergence of the populations here analysed. The scarce potential of long-distance dispersal of S. abaster may have also enhanced the divergence retrieved.

Key words

pipefish brackish-water genetics morphology population divergence 

References

  1. Al-Hassan L.A.J. 1987. Variations in meristic characters of Nematalosa nasus from Iraqi and Kuwaiti waters. Jpn. J. Ichthyol. 33(4): 422–425. DOI: 10.1007/BF02904109Google Scholar
  2. Bailey R.M. & Gosline W. 1955. Variation and systematic significance of vertebral counts in the American fishes of the Family Percidae. Miscellaneus Publications Museum of Zoology, University of Michigan 93: 1–44.Google Scholar
  3. Bandelt H.J., Forster P. & Rohl A. 1999. Median-Joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16(1): 37–48.PubMedGoogle Scholar
  4. Barriga-Sosa I.D.L.A, Jiménez-Badillo M.D.L., Ibáñez A.L & Arredondo-Figueroa J.L 2004. Variability of tilapias (Oreochromis spp.) introduced in Mexico: morphometric, meristic and genetic characters. J. Appl. Ichthyol. 20(1): 7–14. DOI: 10.1111/j.1439-0426.2004.00445.xCrossRefGoogle Scholar
  5. Baus E., Darrock D.J. & Bruford M.W. 2005. Gene-flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star Asterina gibbosa. Mol. Ecol. 14(11): 3373–3382. DOI: 10.1111/j.1365-294X.2005.02681.xPubMedCrossRefGoogle Scholar
  6. Ben Amor M.M., Ben Salem M., Ben Souissi J. & Capapé C. 2007. On the occurrence of the deep-snouted pipefish Syngnathus typhle Linnaeus, 1758 (Osteichthyes: Syngnathidae) in Tunisian waters (Central Mediterranean). Acta Adriat. 48(1): 15–23.Google Scholar
  7. Bilton D.T., Pauls J. & Bishop J.D.D. 2002. Dispersal genetic differentiation and speciation in estuarine organisms. Estuar. Coast Shelf Sci. 55(6): 937–952. DOI: 10.1006/ecss.2002.1037CrossRefGoogle Scholar
  8. Cakic P., Lenhardt M., Mickovic D., Sekulic M. & Budakov L.J. 2002. Biometric analysis of Syngnathus abaster populations. J. Fish Biol. 60(6): 1562–1569. DOI: 10.1111/j.10958649.2002.tb02448.xGoogle Scholar
  9. Chenoweth S.F., Hughes J.M. & Connolly R.C. 2002. Phylogeography of the pipefish Urocampus carinirostris suggests secondary intergradation of ancient lineages. Mar. Biol. 141(3):541–547 DOI: 10.1007/s00227-002-0836-3CrossRefGoogle Scholar
  10. Cognetti G. 1994. Colonization of brackish waters. Mar. Poll. Bull. 28(10): 583–586.CrossRefGoogle Scholar
  11. Cognetti G. & Maltagliati F. 2000. Biodiversity and adaptive mechanisms in brackish water fauna. Mar. Poll. Bull. 40(1):7–14. DOI: 10.1016/S0025-326X(99)00173-3CrossRefGoogle Scholar
  12. Dawson C.E. 1986. Syngnathidae, pp. 628–639. In: Whitehead P.J.P., Bauchot M.L., Hureau J.C., Nielson J. & Tortonese E. (eds), Fishes of the North Eastern Atlantic and of the Mediterranean, Vol. II., UNESCO, Paris, 1473 pp.Google Scholar
  13. Diawara M., Zouari-Tlig S., Rabaoui L. & Ben Hassine O.K. 2008. Impact of management on the diversity of macrobenthic communities in Tunis north lagoon: systematics. Cah. Biol. Mar. 49(1): 1–16.Google Scholar
  14. Excoffier L. & Lischer H.E.L. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10(3): 564–567. DOI: 10.1111/j.1755-0998.2010.02847.xCrossRefGoogle Scholar
  15. Farris J.S., Kallersjo M., Kluge A.G. & Bult C. 1995. Constructing a significance test for incongruence. Syst. Biol. 44(4):570–572.Google Scholar
  16. Ferrito V., Maltagliati F., Mauceri A., Adorno A. & Tigano C. 2003. Morphological and genetic variation in four Italian populations of Lebias fasciata (Teleostei Cyprinodontidae). Ital. J. Zool. 70(2): 115–121. DOI: 10.1080/11250000309356504CrossRefGoogle Scholar
  17. Fisher R.A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7(2): 179–188. DOI: 10.1111/j.1469-1809.1936.tb02137.xCrossRefGoogle Scholar
  18. Franičevič M.G., Sinovčić V.C. & Zorica B. 2005. Biometry analysis of the Atlantic bonito, Sarda sarda (Bloch, 1753) in the Adriatic Sea. Acta Adriat. 46(2): 213–222.Google Scholar
  19. Franzoi P., Maccagnani R., Rossi R. & Ceccherelli V.U. 1993. Life cycles and feeding habits of Syngnathus taenionotus and S. abaster (Pisces, Syngnathidae) in a brackish bay of the PO River Delta (Adriatic Sea). Mar. Ecol. Prog. Ser. 97(1):71–81.CrossRefGoogle Scholar
  20. Filatov D.A., Moneger F., Negrutiu I. & Charlesworth D. 2000. Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution. Nature 404(6776): 388–390. DOI: 10.1038/35006057PubMedCrossRefGoogle Scholar
  21. Fu Y.X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2): 915–925.PubMedGoogle Scholar
  22. Gürkan S. 2008. The biometric analysis of pipefish species from Çamalt Lagoon (İzmir Bay, Aegean Sea). E.U. J. Fish. Aquat. Sci. 25(1): 53–56.Google Scholar
  23. Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41(41): 95–98.Google Scholar
  24. Hammer Ø., Harper D.A.T. & Ryan P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron. 4: 9 pp.Google Scholar
  25. Hartl D.L. & Clarke A.G. 1997. Principles of Population Genetics. 3rd edn. Sinauer Associates, Sunderland, MA, USA, 542 pp. ISBN-10: 0878933069Google Scholar
  26. Hayouni D., Shili A., Fadlaoui M. & Ben Maiz N. 2010. Répartition de Syngnathus abaster et Syngnathus typhle rondeleti (Syngnathidae) dans la lagune nord de Tunis. Rapp. Comm. Int. Mer Medit. 39: 541.Google Scholar
  27. IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4. http://www.iucnredlist.org/
  28. Knowles L.L. 2004. The burgeoning field of statistical phylogeography. J. Evol. Biol. 17: 1–10. DOI: 10.1046/j.1420-9101.2003.00644.xPubMedCrossRefGoogle Scholar
  29. Lawson E.O. 2010. Morphometric measurements and meristic counts in mudskipper (Periophthalmus papilio) from mangrove swamps of Lagos lagoon, Nigeria. J. Appl. Biosci. 34: 2166–2172. DOI: 10.3923/ajbs.2011.325.339Google Scholar
  30. Maltagliati F. 1999. Genetic divergence in natural populations of the Mediterranean killifish Aphanius fasciatus. Mar. Ecol. Progr. Ser. 179: 155–162. DOI: 10.3354/meps179155CrossRefGoogle Scholar
  31. Maltagliati F., Domenica P., Franch Fosch C., Cossu P., Casu M. & Castelli A. 2003. Small-scale morphological and genetic differentiation in the Mediterranean killifish Aphanius fasciatus (Cyprinodontidae) from a coastal brackish-water pond and an adjacent pool in northern Sardinia. Oceanol. Acta 26(1): 111–119. DOI: 10.1016/S0399-1784(02)01236-7CrossRefGoogle Scholar
  32. Maruyama T. & Birky C.W. Jr 1991. Effects of periodic selection on gene diversity in organelle genomes and other systems without recombination. Genetics 127(2): 449–451.PubMedGoogle Scholar
  33. Mejri R., Lo Brutto S., Ben Hassine O.K. & Arculeo M. 2009. A study on Pomatoschistus tortonesei Miller 1968 (Perciformes, Gobiidae) reveals the Siculo-Tunisian Strait (STS) as a breakpoint to gene flow in the Mediterranean basin. Mol. Phylog. Evol. 53(2): 596–601. DOI: 10.1016/j.ympev.2009.04.018CrossRefGoogle Scholar
  34. Movčan Y.V. 1988. Fauna Ukrainy, Tom 8 (Ryby), Vyp. 3. [Fauna of Ukraine (Fishes)]. Naukova Dumka, Kiev, 366 pp.Google Scholar
  35. Parenti L.R. & Tigano C. 1993. Polymorphic skeletal characters in Aphanius fasciatus (Teleostei: Cyprinodontiformes). Copeia (4): 1132–1137.Google Scholar
  36. Peres J.M. 1967. The Mediterranean benthos. Oceanogr. and Mar. Biol. an Ann. Rev. 5: 449–533.Google Scholar
  37. Posada D. 2008. jModelTest: Phylogenetic Model Averaging. Mol. Biol. Evol. 25(7): 1253–1256. DOI: 10.1093/molbev/msn083PubMedCrossRefGoogle Scholar
  38. Quignard J.P., Mazoyer C., Vilanet R., Man Wai R. & Benharrat I.C. 1983. Un exemple d’exploitation lagunaire en Languedoc: l’étang de l’Or (Mauguio): Pęche et production halieutique. Science et Pęche, Bull. Inst. Pęches Marit. 336: 3–23.Google Scholar
  39. Rozas J. & Rozas R. 1999. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174–175. DOI: 10.1093/bioinformatics/15.2.174PubMedCrossRefGoogle Scholar
  40. Sanna D., Addis A., Biagi F., Motzo C., Carcupino M. & Francalacci P. 2008. mtDNA control region and D-HPLC analysis: a method to evaluate the mating system in Syngnathidae (Teleostei). Mar. Biol. 153: 269–275. DOI: 10.1007/s00227-007-0810-1CrossRefGoogle Scholar
  41. Sanna D., Merella P., Lai T., Farjallah S., Francalacci P., Curini-Galletti M., Pais A. & Casu M. 2010. Combined analysis of four mitochondrial regions allowed the detection of several matrilineal lineages of the Lessepsian fish Fistularia commersonii in the Mediterranean Sea. J. Mar. Biol. Assoc. U.K. 91: 1289–1293. DOI: 10.1017/S0025315410001451Google Scholar
  42. SAS 1990. SAS user’s guide: SAS STAT, SAS BASIC. Version 6, fourth ed. SAS incl, Box 8000. Cary, NC 27512-8000, SAS institute Inc., Cary, NC. ISBN-10: 1555443761Google Scholar
  43. Silva K., Monteiro N.M., Almada V.C. & Vieira M.N. 2006. Early life history of Syngnathus abaster. J. Fish Biol. 68: 80–86. DOI: 10.1111/j.1095-8649.2005.00878.xCrossRefGoogle Scholar
  44. Slatkin M. & Hudson R.R. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129(2): 555–562.PubMedGoogle Scholar
  45. Swofford D.L. 2003. PAUP* Phylogenetic Analysis Using Parsimony (*and other methods), Version 4. Sinauer Associates, Sunderland, MA, USA. http://www.lms.si.edu/PAUP/about.html
  46. Tamura K. & Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10(3): 512–526.PubMedGoogle Scholar
  47. Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28(10): 2731–2739. DOI: 10.1093/molbev/msr121PubMedCrossRefGoogle Scholar
  48. Tortonese E. 1970. Osteichthyes. Pesci ossei (Parte I). In: Fauna d’Italia vol. X, Edizioni Calderini, Bologna, 551 pp. ISBN: 8870190978Google Scholar
  49. Trabelsi M., Faure E., Quignard J-P., Boussaid M., Focant B. & Mâamouri F. 2002. Atherina punctata and Atherina lagunae (Pisces, Atherinidae), new species in the Mediterranean Sea. C. R. Biologies 325(9): 967–975. DOI: 10.1016/S1631-0691(02)01506-8PubMedCrossRefGoogle Scholar
  50. Trabelsi M., Mamouri F., Quignard J.P., Boussaid M & Faure E. 2004. Morphometric or morpho-anatomal and genetic investigations highlight allopatric speciation in Western Mediterranean lagoons within the Atherina lagunae species (Teleostei, Atherinidae). Estuar. Coas. Shelf Sci. 61(4): 713–723. DOI: 10.1016/j.ecss.2004.07.011CrossRefGoogle Scholar
  51. Tremblay J.P., Belhumeur C., Sasseville R. & Grégoire L. 1986. Non monotonic morphometric changes produced at mouse neuromuscular junctions following in vivo stimulation at various frequencies. Exp. Brain Res. 61(3): 638–644. DOI: 10.1007/BF00237590PubMedCrossRefGoogle Scholar
  52. Tudela S. 1999. Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, Engraulis encrasicolus. Fish. Res. 42(3): 229–243. DOI: 10.1016/S0165-7836(99)00052-1CrossRefGoogle Scholar
  53. Vitturi R., Libertini A., Campolmi M., Calderazzo F. & Mazzola A. 1998. Conventional karyotype, nucleolar organizer regions and genome size in five Mediterranean species of Syngnathidae (Pisces, Syngnathiformes). J. Fish Biol. 52(4): 677–687. DOI: 10.1111/j.1095-8649.1998.tb00812.xCrossRefGoogle Scholar
  54. Vizzini S. & Mazzola A. 2004. The trophic structure of the pipefish community (Pisces Syngnathidae) from a Western Mediterranean seagrass meadow based on stable isotope analysis. Estuaries 27(2): 325–333. DOI: 10.1007/BF02803388CrossRefGoogle Scholar
  55. Wallace C.R. 1973. Effects of temperature on developing meristic structures. Trans. Am. Fish. Soc. 102(1): 142–145. DOI: 10.1577/1548-8659(1973)102〈142:EOTODM〉2.0.CO;2CrossRefGoogle Scholar
  56. Wilson A.B. 2006. Genetic signature of recent glaciation on populations of a near-shore marine fish species (Syngnathus leptorhynchus). Mol. Ecol. 15(7): 1857–1871. DOI: 10.1111/j.1365-294X.2006.02911.xPubMedCrossRefGoogle Scholar
  57. Wilson A.B. & Eigenmann Veraguth I. 2010. The impact of Pleistocene glaciation across the range of a widespread European coastal species. Mol. Ecol. 19(20): 4535–4553. DOI: 10.1111/j.1365-294X.2010.04811.xPubMedCrossRefGoogle Scholar
  58. Wilson A.B., Ahnesjo I., Vincent A.C. & Meyer A. 2003. The dynamics of male brooding mating patterns and sex roles in pipefishes and seahorses (family Syngnathidae). Evolution 57(6): 1374–1386.PubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Hajer Ben Alaya
    • 1
  • Daria Sanna
    • 2
  • Marco Casu
    • 2
  • Francesca Biagi
    • 2
  • Paolo Francalacci
    • 2
  • Marcella Carcupino
    • 2
  • René Galzin
    • 3
  • Jean-Pierre Quignard
    • 4
  • Monia Trabelsi
    • 1
  1. 1.Marine Biology LaboratoryFaculty of Sciences of TunisCampusTunisia
  2. 2.Dipartimento di Zoologia e Genetica EvoluzionisticaUniversità di SassariSassariItaly
  3. 3.USR 3278 EPHE-CNRSUniversité de PerpignanPerpignan CedexFrance
  4. 4.Laboratoire d’IchtyologieUniversité de Montpellier II, Sciences et Techniques LanguedocMontpellier Cedex 5France

Personalised recommendations