, Volume 66, Issue 4, pp 648–653 | Cite as

The changes in the predatory behavior of the microturbellarian Stenostomum sphagnetorum on two species of toxin-secreting ciliates of the genus Spirostomum

  • Federico BuonannoEmail author
Section Zoolgy


It is known that the microturbellarian Stenostomum sphagnetorum, a common ciliate predator, is very sensitive against different types of toxins produced by other ciliates for chemical defense, and consequently, it is not able to capture and ingests these ciliates. In particular, when the predator tries to attack one of these toxin-secreting ciliates, it is forced to regurgitate the captured prey in response to the toxin discharged from the ciliates. In this study it is shown that after repeated attacks by S. sphagnetorum against two species of toxic ciliates (Spirostomum ambiguum and Spirostomum teres), the predator acquires a behavior of prey selection that leads to the exclusion of these ciliates among the possible prey and to the distinction between edible and inedible (toxic) ciliates. This learned behavior, which is maintained for days, is lost only after the asexual reproduction of the microturbellarian. In addition, S. sphagnetorum learns to recognize and avoid specimens of S. ambiguum and S. teres artificially deprived of their toxins, strongly suggesting that the toxins are not exclusively associated in the prey recognition of the microturbellarian.

Key words

Microturbellaria ciliates predatory behaviour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agata K., Soejima Y., Kato K., Kobayashi C., Umesono Y. & Watanabe K. 1998. Structure of planarian central nervous system (CNS) revealed by neuronal cell markers. Zool. Sci. 15: 433–440.PubMedCrossRefGoogle Scholar
  2. Buonanno F. 2005. Variations in the efficiency of ciliate extrusomal toxins against a common ciliate predator, the catenulid Stenostomum sphagnetorum. Ital. J. Zool. 72: 293–295.CrossRefGoogle Scholar
  3. Buonanno F. 2009. Antipredator behavior of freshwater microturbellarian Stenostomum sphagnetorum against the predatory ciliate Dileptus margaritifer. Zool. Sci. 26: 443–447.PubMedCrossRefGoogle Scholar
  4. Buonanno F. & Ortenzi C. 2010. The protozoan toxin climacostol and its derivatives: Cytotoxicity studies on 10 species of freeliving ciliates. Biologia 65: 675–680. DOI: 10.2478/s11756-010-0071-1CrossRefGoogle Scholar
  5. Buonanno F., Quassinti L., Bramucci M., Amantini C., Lucciarini R., Santoni G., Iio H. & Ortenzi C. 2008. The protozoan toxin climacostol inhibits growth and induces apoptosis of human tumor cell lines. Chem. Biol. Interact. 176: 151–164.PubMedCrossRefGoogle Scholar
  6. Buonanno F., Saltalamacchia P. & Miyake A. 2005. Defense function of pigmentocysts in the karyorelictid ciliate Loxodes striatus. Eur. J. Protistol. 41: 151–158. DOI: 10.1016/j.ejop.2005.01.001CrossRefGoogle Scholar
  7. Chivers D.P. & Smith R.J.F. 1998. Chemical alarm signaling in aquatic predator-prey systems: a review and prospectus. Ecoscience 5: 338–352. DOI: 10.1126/science.227.4692.1347Google Scholar
  8. Dill L.M. 1974. The escape response of zebra danio (Brachydanio rerio) II. The effect of experience. Anim. Behav. 22: 723–730. DOI: 10.1016/S0003-3472(74)80023-0Google Scholar
  9. Griffin A.S., Blumstein D.T. & Evans C.S. 2000. Training captive bred and translocated animals to avoid predators. Conserv. Biol. 14: 1317–1326. DOI: 10.1046/j.1523-1739.2000.99326.xCrossRefGoogle Scholar
  10. Hammil E., Kratina P. & Anholt B.R. 2009. Non-lethal presence of predators modifies morphology and movement rates in Euplotes. Hydrobiologia 621: 183–189. DOI: 10.1007/s10750-008-9644-1CrossRefGoogle Scholar
  11. Harumoto T., Miyake A., Ishikawa N., Sugibayashi R., Zenfuku K. & Iio H. 1998. Chemical defense by means of pigmented extrusomes in the ciliate Blepharisma japonicum. Eur. J. Protistol. 34: 458–470.Google Scholar
  12. Hausmann K. 1978. Extrusive organelles in protists. Int. Rev. Cytol. 52: 197–276.PubMedCrossRefGoogle Scholar
  13. Hazlett B.A. & McLay C. 2000. Contingencies in the behavior of the crab Heterozius rotundifrons. Anim. Behav. 59: 965–974. DOI:10.1006/anbe.1999.1417PubMedCrossRefGoogle Scholar
  14. Kuhlmann H.-W. & Heckmann K. 1985. Interspecific morphogens regulating prey-predator relationships in protozoa. Science 227: 1347–1349. DOI: 10.1126/science.227.4692.1347PubMedCrossRefGoogle Scholar
  15. Kuhlmann H.-W. & Heckmann K. 1994. Predation risk of typical ovoid and winged morphs of Euplotes (Protozoa, Ciliophora). Hydrobiologia 284: 219–227. DOI: 10.1007/BF00006691CrossRefGoogle Scholar
  16. Kush J. 1993. Induction of morphological changes in ciliates. Oecologia 94: 571–575. DOI: 10.1007/BF00566974CrossRefGoogle Scholar
  17. Miyake A. 1981. Cell interaction by gamones in Blepharisma, pp. 95–129. In: O’Day D.H. & Horgen P.A. (eds), Sexual Interaction in Eukaryotic Microbes, Academic Press, New York.Google Scholar
  18. Miyake A. & Beyer J. 1973. Cell interaction by means of soluble factors (gamones) in conjugation of Blepharisma intermedium. Exp. Cell Res. 76: 15–24. DOI: 10.1016/0014-4827(73)90413-8PubMedCrossRefGoogle Scholar
  19. Miyake A., Buonanno F., Saltalamacchia P., Masaki M.E. & Iio H. 2003. Chemical defence by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. Eur. J. Protistol. 39: 25–36. DOI: 10.1078/0932-4739-00900CrossRefGoogle Scholar
  20. Miyake A., Harumoto T. & Iio H. 2001. Defense function of pigment granules in Stentor coeruleus. Eur. J. Protistol. 37: 77–88. DOI: 10.1078/0932-4739-00809CrossRefGoogle Scholar
  21. Miyake A. & Honda H. 1976. Cell union and protein synthesis in conjugation of Blepharisma. Exp. Cell Res. 100: 31–40. DOI:10.1016/0014-4827(76)90323-2PubMedCrossRefGoogle Scholar
  22. Pucciarelli S., Buonanno F., Pellegrini G., Ballarini P.& Miceli C. 2008. Biomonitoring of Lake Garda: Identification of ciliate species and symbiotic algae responsible for the “black-spot” bloom during the summer of 2004. Environ. Res. 107(2): 194–200. DOI:10.1016/j.envres.2008.02.001PubMedCrossRefGoogle Scholar
  23. Sera Y., Usuki Y. & Iio H. 2006. Synthetic studies on spirostomin, a defense toxin of Spirostomum teres. Nippon Kagakkai Koen Yokoshu 86(2): 1382.Google Scholar
  24. Turner A.M., Turner S.E. & Lappi H.M. 2006. Learning, memory and predator avoidance by freshwater snails: effects of experience on predator recognition and defensive strategy. Anim. Behav. 72: 1443–1450. DOI:10.1006/anbe.2006.05.010CrossRefGoogle Scholar
  25. Whitam J. & Mathis A. 2000. Effects of hunger and predation risk on foraging behavior of graybelly salamanders, Eurycea multiplicata. J. Chem. Ecol. 26: 1659–1665. DOI: 10.1023/A:1005590913680CrossRefGoogle Scholar
  26. Wisenden B.D. & Millard M.C. 2001. Aquatic flatworms use chemical cues from injured conspecifics to assess predation risk and to associate risk with novel cues. Anim. Behav. 62: 761–766. DOI:10.1006/anbe.2001.1797CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Department of Educational Sciences and TrainingUniversity of MacerataMacerataItaly

Personalised recommendations