Biologia

, Volume 66, Issue 3, pp 499–505 | Cite as

Small scale gradient effects on isopods (Crustacea: Oniscidea) in karstic sinkholes

  • Ferenc Vilisics
  • Péter Sólymos
  • Antal Nagy
  • Roland Farkas
  • Zita Kemencei
  • Elisabeth Hornung
Article
  • 82 Downloads

Abstract

We studied abundance and diversity patterns of terrestrial isopod assemblages along a ‘micro-scale’ vertical gradient in sinkholes in the Aggtelek National Park, Hungary. Time restricted manual sampling yielded ten native species, including endemic and rare ones. Along the gradient we found no major differences in species richness and -composition, and abundance decreased from the bottoms to the upper zones of the sinkholes. Species specific habitat preference on a vertical gradient showed two distinct groups by indicator species analysis: occurrence of habitat “generalists” was irrespective of vertical zones while “specialists” were restricted to the bottoms of the dolines. The latter group is formed mainly by rare species. We found that both diversity and evenness of isopod assemblages were highest in the bottom zone. Our results draw the attention to the significance of such common, yet undiscovered surficial depressions that can provide shelters for rare and specialist species and can provide shelter for survival of populations under changing climatic conditions.

Key words

diversity woodlice zonation biodiversity assessment abundance species richness Aggtelek National Park 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bárány I. 1985. A karsztos dolinák talajainak és növényzetének sajátosságai [Characteristics of karstic dolines and their vegetation]. Földrajzi értesít“o 3:195–208.Google Scholar
  2. Bárány-Kevei I. 1999. Microclimate of karstic dolines. Acta Climatologica 32–33:19–27.Google Scholar
  3. Dufręne M. & Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67:345–366. DOI: 10.1890/0012-9615 (1997)067[0345:SAAIST]2.CO;2Google Scholar
  4. Forró L. & Farkas S. 1998. Checklist, preliminary distribution maps, and bibliography of woodlice in Hungary (Isopoda: Oniscidea). Misc. Zool. Hung. 12:21–44.Google Scholar
  5. Giurginca A., Nae A. & Popa I. 2006. Oniscidea (Isopoda, Malacostraca) from the Piatra Craiului National Park in Romania. Arch. Biol. Sci. Belgrade 58:25–29.CrossRefGoogle Scholar
  6. Hornung E., Tóthmérész B., Magura T. & Vilisics F. 2007a. Changes of isopod assemblages along an urban - suburban - rural gradient in Hungary. Eur. J. Soil. Biol. 43:158–165. DOI: 10.1016/j.ejsobi.2007.01.001CrossRefGoogle Scholar
  7. Hornung E., Vilisics F. & Sólymos P. 2008. Low alpha and high beta diversity in terrestrial isopod assemblages in the Transdanubian region of Hungary, pp. 1–13. In: Zimmer M., Cheikrouha C. & Taiti S. (eds), Proceedings of the International Symposium of Terrestrial Isopod Biology, ISTIB-7, Shaker Verlag, Aachen, Germany.Google Scholar
  8. Hornung E., Vilisics F. & Szlávecz K. 2007b. Szárazföldi ászkarák (Isopoda, Oniscidea) fajok tipizálása hazai el“ofordulási adatok alapján (különös tekintettel a sikeres megteleped“okre) [Typisation of Hungarian terrestrial isopod species based on their occurrence with special regard on the successful colonizers]. Természetvédelmi Közlemények 13:47–58.Google Scholar
  9. Kontschán J. 2003. Néhány ritka ászkarák (Crustacea: Isopoda: Oniscidea) újabb el“ofordulási adatai Magyarországról [New data on occurrence of some rare isopods (Crustacea: Isopoda: Oniscidea) from Hungary]. Folia Hist. Nat. Mus. Matr. 27:43–48.Google Scholar
  10. Kováč L., Kostúrová N. & Miklisová D. 2005. Comparison of collembolan assemblages (Hexapoda, Collembola) of thermophilous oak woods and Pinus nigra plantations in the Slovak Karst (Slovakia). Pedobiologia 49:29–40. DOI: 10.1016/j.pedobi.2004.07.009CrossRefGoogle Scholar
  11. Lawton J.H., MacGarwin M. & Heads P.A. 1987. Effect of altitude on the abundance and species richness of insect herbivores on bracken. J. Anim. Ecol. 56:147–160.CrossRefGoogle Scholar
  12. Lymberakis P., Mylonas M. & Sfenthourakis S. 2003. Altitudinal variation of oniscidean communities on Cretan mountains, pp. 217–230. In: Sfenthourakis S., Araujo P.B., Hornung E., Schmalfuss H., Taiti S. & Szlavecz K. (eds), The Biology of Terrestrial Isopods, V, Crustaceana Monographs 2, Brill, Leiden, Boston.Google Scholar
  13. Magurran A.E. 2004. Measuring Biological Diversity. Blackwell Publishing, Oxford, 286 pp.Google Scholar
  14. Mock A., Kania G. & Miklisová D. 2007. Terrestrial isopods (Oniscidea) of the Ojców National Park (Poland), pp. 97–102. In: Tajovsky K., Schlaghamersky J., Pižl V. (eds), Contributions to Soil Zoology in Central Europe II., Institute of Soil Biology, Biology Centre, Academy of Sciences of the Czech Republic, České Budějovice.Google Scholar
  15. Nagy A. & Sólymos P. 2002. Relationship between microclimate and Orthoptera assemblages in different exposures of a dolina. Articulata 17(1):73–84.Google Scholar
  16. Oksanen J., Blanchet F.G., Kindt R., Legendre P., O’Hara R. B., Simpson G.L., Sólymos P., Stevens M.H.H. & Wagner H. 2010. Vegan: Community Ecology Package. R package version 1.17–2. http://CRAN.R-project.org/package=vegan
  17. R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, URL: http://www.R-project.org
  18. Raschmanová N., Kovčá D. 2008. The effect of mesoclimate on Collembola diversity in the Zádiel Valley, Slovak Karst (Slovakia). Eur. J. Soil. Biol. 44:463–472.CrossRefGoogle Scholar
  19. Schmalfuss H. 2003. World Catalog of Terrestrial Isopods (Isopoda: Oniscidea). Stuttgarter Beitr. Naturk. Ser. A. 654, 341 pp.Google Scholar
  20. Sfenthourakis S., Anastasiou I. & Strutenschi T. 2005. Altitudinal terrestrial isopod diversity. Eur. J. Soil Biol. 41:91–98. DOI: 10.1016/j.ejsobi.2005.09.006CrossRefGoogle Scholar
  21. Sólymos P., Farkas R., Kemencei Z., Páll-Gergely B., Vilisics F., Nagy A., Kisfali M. & Hornung E. 2009. Micro-habitat scale survey of land snails in dolines of the Alsó-hegy, Aggtelek National Park, Hungary. Mollusca 27(2):169–173.Google Scholar
  22. Sutton S.L. 1980. Woodlice. Pergamon Press, Oxford, 144 pp.Google Scholar
  23. Tóthmérész B. 1995. Comparison of different methods for diversity ordering. J. Veg. Sci. 6:283–290.CrossRefGoogle Scholar
  24. Tóthmérész B. 1998. On the characterization of scale-dependent diversity. Abstr. Bot. 22:149–156.Google Scholar
  25. Vilisics F. & Hornung E. 2009. Urban areas as introduction hotspots and shelters for native isopod species. Urban Ecosyst. 12:333–345. DOI: 10.1007/s11252-009-0097-8CrossRefGoogle Scholar
  26. Vilisics F. & Lapanje A. 2005. Terrestrial isopods (Isopoda: Oniscidea) from the Slovenian Karst. Natura Sloveniae 7(1):13–21.Google Scholar
  27. Vilisics F., Elek Z., Lövei L.G. & Hornung E. 2007. Composition of terrestrial Isopod assemblages along an urbanisation gradient in Denmark. Pedobiologia 51:45–53. DOI: 10.1016/j.pedobi.2006.12.004CrossRefGoogle Scholar
  28. Vilisics F., Nagy A., Sólymos P., Farkas R., Kemencei Z., Páll-Gergely B., Kisfali M. & Hornung E. 2008. Data on the terrestrial Isopoda fauna of the Alsó-hegy, Aggtelek National Park, Hungary. Folia Faunistica Slovaca 13(4):19–22.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Ferenc Vilisics
    • 1
  • Péter Sólymos
    • 1
    • 2
  • Antal Nagy
    • 3
  • Roland Farkas
    • 4
  • Zita Kemencei
    • 1
  • Elisabeth Hornung
    • 1
  1. 1.Institute for BiologySzent István University, Faculty of Veterinary ScienceBudapestHungary
  2. 2.Department of Biological SciencesAlberta Biodiversity Monitoring Institute, University of AlbertaEdmonton ABCanada
  3. 3.Institute of Plant ProtectionUniversity of Debrecen, Faculty of Agricultural and Environmental ManagementDebrecenHungary
  4. 4.Aggtelek National Park DirectorateJósvafőHungary

Personalised recommendations