Skip to main content
Log in

Seasonal vertical distribution and diel migration of zooplankton in a temperate stratified lake

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The investigation of the vertical distribution of the zooplankton community in the temperate Lake Trichonis during four seasons in 2005, showed the existence of vertical segregation among species, ontogenetic stages and sexes within and between the major groups. In each season, the two or three more abundant rotifer species distributed at separate depth layers, while this feature was maintained during the entire 24 h period, since no diel vertical migrations (DVM) were performed. In contrast, the crustacean community, comprised mainly by the calanoid copepod Eudiaptomus drieschi and the cladoceran Diaphanosoma orghidani, showed various patterns of DVM, being more pronounced in spring and summer. Females of E. drieschi distributed deeper than males, while the copepod nauplii were found mainly in the surface layer in all four seasons. Temperature was the most important abiotic factor affecting directly and indirectly the vertical distribution and migration of various species. During stratification, the metalimnion was the most productive layer in Lake Trichonis, having maximum values of dissolved oxygen and low transparency due to high concentration of organic matter and phytoplankton. The DVM patterns of the crustaceans indicate that the metalimnion acts probably as a daylight refuge against predation by Atherina boyeri, which is the dominant planktivorous fish in the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA, AWWA & WPCF 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington D.C.

    Google Scholar 

  • Armengol-Diaz J., Esparcia A., Vicente E. & Miracle M.R. 1993. Vertical distribution of planktonic rotifers in a karstic meromictic lake. Hydrobiologia 255/256: 381–388. DOI: 10.1007/BF00025862

    Article  Google Scholar 

  • Barbiero R.P. & Tuchman M.L. 2001. Results from the U.S. EPA’s biological open water surveillance program of the Laurentian Great Lakes: II. Deep chlorophyll maxima. J. Great Lakes Res. 27: 155–166.

    Article  CAS  Google Scholar 

  • Blanco S., Romo S., Villena M.J. & Martínez S. 2003. Fish communities and food web interactions in some shallow Mediterranean lakes. Hydrobiologia 506: 473–480.

    Article  Google Scholar 

  • Bronmark C. & Hansson L.A. 1998. The Biology of Lakes and Ponds. Oxford University Press, New York, 216 pp.

    Google Scholar 

  • Burns C.W. & Mitchell S.F. 1980. Seasonal succession and vertical distribution of zooplankton in Lake Hayes and Lake Johnson. N. Z. J. Mar. Freshw. Res. 14: 189–204.

    Article  Google Scholar 

  • Castro B.B., Marcues S.M. & Conçalves F. 2007. Habitat selection and diel distribution of the crustacean zooplankton from a shallow Mediterranean lake during the turbid and clear water phases. Freshwater Biol. 52: 421–433. DOI: 10.1111/j.1365-2427.2006.01717.x

    Article  Google Scholar 

  • Chrisafi E., Kaspiris P. & Katselis G. 2007. Feeding habits of sand smelt (Atherina boyeri, Risso 1810) in Trichonis Lake (Western Greece). J. Appl. Ichthyol. 23: 209–214. DOI: 10.1111/j.1439-0426.2006.00824.x

    Article  Google Scholar 

  • Ciros-Perez J., Carmona M.J. & Serra M. 2001. Resource competition between sympatric sibling rotifer species. Limnol. Oceanogr. 46: 1511–1523. DOI: 10.4319/lo.2001.46.6.1511

    Article  Google Scholar 

  • De Meester L. & Weider L.J. 1999. Depth selection behavior, fish kairomones and the life histories of Daphnia hyalina x galeata hybrid clones. Limnol. Oceanogr. 44: 1248–1258. DOI: 10.4319/lo.1999.44.5.1248

    Article  Google Scholar 

  • De Meester L., Dawidowicz P., Van Gool E. & Loose C.J. 1999. Ecology and evolution of predator-induced behavior of zooplankton: depth selection behavior and diel vertical migration, pp. 160–176. In: Tollrian R. & Harvell C.D. (eds), The Ecology and Evolution of Inducible Defences, Princeton University Press, Princeton.

    Google Scholar 

  • Dini M.L., Soranno P.A., Scheuerell M.D. & Carpenter S.R. 1993. Effects of predators and food supply on diel vertical migration of Daphnia, pp. 153–171. In: Carpenter S.R. & Kitchell J.F. (eds), The Trophic Cascade in Lakes. University Press, Cambridge.

    Chapter  Google Scholar 

  • Dodson S. 1990. Predicting diel vertical migration of zooplankton. Limnol. Oceanogr. 35: 1195–1200.

    Article  Google Scholar 

  • Doulka E. & Kehayias G. 2008. Spatial and temporal distribution of zooplankton in Lake Trichonis (Greece). J. Nat. Hist. 42: 575–595.

    Article  Google Scholar 

  • Doulka E., Kehayias G. & Leonardos I. 2007. Recent data on the diet of sand smelt Atherina boyeri (Risso 1810) during four seasons in Lake Trichonis, pp. 181–184. In: Proceedings of the 13th Pan-Hellenic Conference of Ichthyologists, 27–30 October 2007, Mytilini, Greece.

  • Einsle U. & Walz N. 1972. Die täglichen Vertikalwanderungen der Larven von Dreissena polymorpha Pallas im Bodensee-Obersee. GWF-Wasser/Abwasser 113: 428–430.

    Google Scholar 

  • Gélinas M. & Pinel-Alloul B. 2008. Summer depth selection in crustacean zooplankton in nutrient-poor boreal lakes is affected by recent residential development. Freshwater Biol. 53: 2438–2454. DOI: 10.1111/j.1365-2427.2008.02063.x

    Article  Google Scholar 

  • Gliwicz M.Z. & Pijanowska J. 1988. Effect of predation and resource depth distribution on vertical migration of zooplankton. B. Mar. Sci. 43: 695–709.

    Google Scholar 

  • Grzegorz G., Klimaszyk P. & Kuczyńska-Kippen N. 2006. Diel vertical distribution of zooplankton in Piaseczno Lake (Wdecki Landscape Park) — II. Rotifera. Oceanological and Hydrobiological Studies 35: 29–37.

    CAS  Google Scholar 

  • Han B.P. & Straškraba M. 2001. Control mechanisms of diel vertical migration: theoretical assumptions. J. Theor. Biol. 210: 305–318. DOI: 10.1006/jtbi.2001.2307

    Article  CAS  PubMed  Google Scholar 

  • Hanazato T. 1992. Direct and indirect effects of low-oxygen layers on lake zooplankton communities. Arch. Hydrobiol. 35: 87–98.

    Google Scholar 

  • Helland I.P., Freyhof J., Kasprzak P. & Mehner T. 2007. Temperature sensitivity of vertical distributions of zooplankton and planktivorous fish in a stratified lake. Oecologia 151: 322–330. DOI: 10.1007/s00442-006-0541-x

    Article  PubMed  Google Scholar 

  • Hofmann W. 1975. The influence of spring circulation on zooplankton dynamics in the Plußsee. Vehr. Int. Verein. Limnol. 19: 1241–1250.

    Google Scholar 

  • Hutchinson G.E. 1967. A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton. J. Wiley and Sons, Ltd, New York, 1115 pp.

    Google Scholar 

  • Jamieson C.D. 2005. Coexistence of two similar copepod species, Eudiaptomus gracilis and E. graciloides: the role of differential predator avoidance. Hydrobiologia 542: 191–202.

    Article  Google Scholar 

  • Karabin A. & Ejsmont-Karabin J. 2005. An evidence for vertical migrations of small rotifers — a case of rotifer community in a dystrophic lake. Hydrobiologia 546: 381–386.

    Article  Google Scholar 

  • Kessler K. & Lampert W. 2004. Fitness optimization of Daphnia in a trade-off between food and temperature. Oecologia 140: 381–387. DOI: 10.1007/s00442-004-1592-5

    Article  PubMed  Google Scholar 

  • Korovchinsky N.M. 1992. Sididae and Holopediidae: (Crustacea: Daphniiphormes), pp. 1–82. In: Dumont H.J.F. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Lampert W. 1989. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3: 21–27.

    Article  Google Scholar 

  • Lampert W. 1993. Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator-avoidance hypothesis. Arch. Hydrobiol. 39: 79–88.

    Google Scholar 

  • Lampert W., McCauley E. & Manly B.F.J. 2003. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs? Proc. R. Soc. Biol. Lond. B Biol. Sci. 270: 765–773.

    Article  Google Scholar 

  • Leonardos I.D. 2001. Ecology and exploitation pattern of a landlocked population of sand smelt, Atherina boyeri (Risso 1810), in Trichonis Lake (western Greece). J. Appl. Ichthyol. 17: 262–266.

    Article  Google Scholar 

  • Lewandowski K. & Eijsmont-Karabin J. 1983. Ecology of planktonic larvae of Dreissena polymorpha (Pall.) in lakes with different degree of heating. Pol. Arch. Hydrobiol. 30: 89–101.

    Google Scholar 

  • Liu S., Sunb S. & Han B. 2006. Viewing DVM via general behaviors of zooplankton: A way bridging the success of individual and population. J. Theor. Biol. 238: 435–448. DOI: 10.1006/jtbi.2005.06.003

    Article  PubMed  Google Scholar 

  • Marcogliese D.J. & Esch G.W. 1992. Alterations of vertical distribution and migration of zooplankton in relation to temperature. Am. Midl. Nat. 128: 139–155.

    Article  Google Scholar 

  • Mikschi E. 1989. Rotifer distribution in relation to temperature and oxygen content. Hydrobiologia 186/187: 209–214.

    Article  Google Scholar 

  • Neil W.E. 1990. Induced vertical migration in copepods as a defence against invertebrate predation. Nature 345: 524–526. DOI: 10.1038/345524a0

    Article  Google Scholar 

  • Padisak J., Krienitz L., Koschel R. & Nedoma J. 1997. Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany — origin, activity, development and erosion. Eur. J. Phycol. 32: 403–416. DOI: 10.1080/0967026971 0001737349

    Google Scholar 

  • Pasternak A.F., Mikheev V.N. & Wanzenböck J. 2006. How plankton copepods avoid fish predation: From individual responses to variations of the life cycle. J. Ichthyol. 46: S220–S226.

    Article  Google Scholar 

  • Persaud A.D. & Williamson C.E. 2005. Ultraviolet and temperature effects on planktonic rotifers and crustaceans in northern temperate lakes. Freshwater Biol. 50: 467–476. DOI: 10.1111/j.1365-2427.2005.01334.x

    Article  Google Scholar 

  • Rainey J.D., Sobczak W.V. & Fradkin S.C. 2007. Zooplankton diel vertical distributions in Lake Crescent a deep oligotrophic lake in Washington (USA). J. Freshw. Ecol. 22: 469–476.

    Article  Google Scholar 

  • Rejas D., DeMeester L., Ferrufino L., Maldonado M. & Ollevier F. 2007. Diel vertical migration of zooplankton in an Amazonian várzea lake (Laguna Bufeos, Bolivia). Stud. Neotrop. Fauna Environ. 42: 71–81.

    Article  Google Scholar 

  • Rhyne A.L., Ohs C.L. & Stenn E. 2009. Effects of temperature on reproduction and survival of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 292: 53–59. DOI: 10.1016/j,aquaculture.2009.03.041

    Article  Google Scholar 

  • Ringelberg J. 1999. The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol. Rev. Camb. Philos. Soc. 74: 397–423.

    Article  Google Scholar 

  • Ringelberg J. & Van Gool E. 2003. On the combined analysis of proximate and ultimate aspects in diel vertical migration (DVM) research. Hydrobiologia 491: 85–90.

    Article  Google Scholar 

  • Schabetsberger R. & Jersabek C.D. 2004. Shallow males, deep females: sex-biased differences in habitat distribution of the freshwater calanoid copepod Arctodiaptomus alpinus. Ecography 27: 506–520.

    Article  Google Scholar 

  • Skoulikidis N.T., Bertahas I. & Koussouris T. 1998. The environmental state of freshwater resources in Greece (rivers and lakes). Environ. Geol. 36: 1–17.

    Article  CAS  Google Scholar 

  • Sprung M. 1993. The other life: An account of present knowledge of the larval phase of Dreissena polymorpha, pp. 39–54. In: Nalepa T.F. & Schloesser D.W. (eds), Zebra Mussels: Biology, Impacts & Control, CRC Press Inc, Florida.

    Google Scholar 

  • Stich H.B. & Lampert W. 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398. DOI: 10.1038/293396a0

    Article  Google Scholar 

  • Svensson J.E. 1997a. Fish predation on Eudiaptomus gracilis in relation to clutch size, body size, and sex: a field experiment. Hydrobiologia 344: 155–161.

    Article  Google Scholar 

  • Svensson J.E. 1997b. Sex differences in habitat distribution of a planktonic copepod, Eudiaptomus gracilis. Ecography 20: 407–416.

    Article  Google Scholar 

  • Tafas T. & Economou-Amilli A. 1997. Limnological survey of the warm monomictic lake Trichonis (central western Greece). II. Seasonal phytoplankton periodicity — a community approach. Hydrobiologia 344: 141–153.

    Article  CAS  Google Scholar 

  • Thackeray S.J., George D.G., Jones R.I. & Winfield I.J. 2005. Vertical heterogeneity in zooplankton community structure: A variance partitioning approach. Arch. Hydrobiol. 164: 257–275.

    Article  Google Scholar 

  • Thackeray S.J., George D.G., Jones R.I. & Winfield I.J. 2006. Statistical quantification of the effect of thermal stratification on patterns of dispersion in a freshwater zooplankton community. Aquat. Ecol. 40: 23–32. DOI: 10.1007/s10452-005-9021-3

    Article  CAS  Google Scholar 

  • Wetzel R.G. 2001. Limnology. Lake and river ecosystems. Third Edition. Academic Press, San Diego, 1006 pp.

    Google Scholar 

  • Williamson C.E. & Rose K.C. 2009. Ultraviolet insights: Attempting to resolve enigmatic patterns in pelagic freshwaters — the historical context and a view to the future. Int. Rev. Hydrobiol. 94: 129–142.

    Article  CAS  Google Scholar 

  • Williamson C.E., Sanders R.W., Moeller R.E. & Stutzman P.L. 1996. Utilization of subsurface food resources for zooplankton reproduction: Implications for diel vertical migration theory. Limnol. Oceanogr. 41: 224–233.

    Article  Google Scholar 

  • Winder M., Buergi H.R. & Spaak P. 2003. Seasonal vertical distribution of phytoplankton and copepod species in a highmountain lake. Arch. Hydrobiol. 158: 197–213.

    Article  Google Scholar 

  • Winder M. & Hunter D.A 2008. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156: 179–192. DOI: 10.1007/s00442-008-0964-7

    Article  PubMed  Google Scholar 

  • Zadereev Y.S. & Tolomeyev A.P. 2007. The vertical distribution of zooplankton in brackish meromictic lake with deep-water chlorophyll maximum. Hydrobiologia 576: 69–82.

    Article  Google Scholar 

  • Zhou S., Huang X. & Cai Q. 2007. Vertical distribution and migration of planktonic rotifers in Xiangxi Bay of the Three Gorges Reservoir, China. J. Freshw. Ecol. 22: 441–449.

    Article  Google Scholar 

  • Zaret T.M. 1980. Predation and Freshwater Communities. Yale University Press, New Haven, 187 pp.

    Google Scholar 

  • Zaret T.M. & Suffern J.S. 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21: 804–813.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kehayias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doulka, E., Kehayias, G. Seasonal vertical distribution and diel migration of zooplankton in a temperate stratified lake. Biologia 66, 308–319 (2011). https://doi.org/10.2478/s11756-011-0023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0023-4

Key words

Navigation