Advertisement

Biologia

, Volume 66, Issue 2, pp 266–274 | Cite as

Floristic diversity patterns in the White Carpathians biosphere reserve, Czech Republic

  • Zdenka OtýpkováEmail author
  • Milan Chytrý
  • Lubomír Tichý
  • Vilém Pechanec
  • Jan W. Jongepier
  • Ondřej Hájek
Section Botany

Abstract

The flora of the White Carpathians, a mountain range in the south-east of the Czech Republic, is documented by about 485,000 records of vascular plant occurrences collected since the mid-19th century. A total of 1299 species recorded in 93 grid cells of 2.8 × 3.1 km were used for an analysis of spatial patterns of floristic diversity in the White Carpathians. Multivariate statistical techniques such as ordination and classification were used to reveal the main gradients in floristic composition and species richness, and measured environmental data and Ellenberg indicator values were used to assess underlying environmental factors. There is a striking floristic contrast between the western and eastern part of the study area, which is associated with differences in climate, mean altitude, topographic heterogeneity measured as altitudinal range, and land use. The western part is characterised by thermophilous, continental and calcicolous species of open habitats. In contrast, the more forested eastern part along the state border with Slovakia and the north-eastern part of the area are characterised by acidophilous species with higher moisture requirements. This pattern is consistent with the established phytogeographical division of the Czech Republic into the phytogeographical regions of Thermophyticum and Mesophyticum. The further division of the area into four regions, based on classified grid data, is also similar to the current division into phytogeographical districts, except for the Javorníky district. There are two distinct hot spots of species richness, in the western and the extreme north-eastern part. A poorer flora was found in landscapes with intensive agriculture. Species richness is associated with different environmental factors than species composition, namely with soil types and land-use categories. Alien species are more common in areas with a higher incidence of arable land and built-up areas, and less common in areas dominated by grasslands and forests.

Key words

Bílé Karpaty Mts Ellenberg indicator values grid mapping native and alien species ordination phytogeographical regionalization plant species richness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker T., Dietz H., Billeter R., Buschmann H. & Edwards P.J. 2005. Altitudinal distribution of alien plant species in the Swiss Alps. Persp. Pl. Ecol. Evol. Syst. 7: 173–183.Google Scholar
  2. Chytrý M., Grulich V., Tichý L. & Kouřil M. 1999. Phytogeographical boundary between the Pannonicum and Hercynicum: a multivariate analysis of landscape in the Podyjí/Thayatal National Park, Czech Republic/Austria. Preslia 71: 1–19.Google Scholar
  3. Chytrý M., Pyšek P., Tichý L., Knollová I. & Danihelka J. 2005. Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77: 339–354.Google Scholar
  4. Chytrý M., Jarošík V., Pyšek P., Hájek O., Knollová I., Tichý L. & Danihelka J. 2008. Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89: 1541–1553.CrossRefPubMedGoogle Scholar
  5. Chytrý M., Wild J., Pyšek P., Tichý L., Danihelka J. & Knollová I. 2009. Maps of the level of invasion of the Czech Republic by alien plants. Preslia 81: 187–207.Google Scholar
  6. Ellenberg H., Weber H.E., Düll R., Wirth W., Werner W. & Paulißen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. 2nd ed. Scripta Geobot. 18: 1–258.Google Scholar
  7. Ewald J. 2003. The sensitivity of Ellenberg indicator values to the completeness of vegetation relevés. Basic Appl. Ecol. 4: 507–513.CrossRefGoogle Scholar
  8. Grulich V. 2008. Fytogeografie, pp. 81–88. In: Jongepierová I. (ed.), Louky Bílých Karpat, ZO ČSOP Bílé Karpaty, Veseli nad Moravou.Google Scholar
  9. Hájek M. 1998. Mokřadní vegetace Bílých Karpat. Sborn. Přírod. Kl. Uherské Hradiště, Suppl. 4: 1–158.Google Scholar
  10. Hájková P., Hájek M., Blažková D., Kučera T., Chytrý M., Řezníčková M., Šumberová K., Černý T., Novák J. & Simonová D. 2007. Louky a mezofilní pastviny, pp. 165–280. In: Chytrý M. (ed.), Vegetace České republiky 1. Travinná a keříčková vegetace, Academia, Praha.Google Scholar
  11. Heikkinen R.K. & Neuvonen S. 1997. Species richness of vascular plants in the subarctic landscape of northern Finland: modelling relationships to the environment. Biol. Conserv. 6: 1181–1201.Google Scholar
  12. Heikkinen R.K., Birks H.J.B. & Kalliola R.J. 1998. A numerical analysis of the mesoscale distribution patterns of vascular plants in the subarctic Kevo Nature Reserve, northern Finland. J. Biogeogr. 25: 123–146.CrossRefGoogle Scholar
  13. Hill M. O. 1979. TWINSPAN. A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, 90 pp.Google Scholar
  14. Jongepier J.W. & Jongepierová I. 2006. Komentovaný seznam cévnatých rostlin Bílých Karpat. ZO ČSOP Bílé Karpaty, Veselí nad Moravou, 108 pp.Google Scholar
  15. Jongepier J.W. & Pechanec V. 2006. Atlas rozšíření cévnatých rostlin CHKO Bílé Karpaty. ZO ČSOP Bílé Karpaty, Veselí nad Moravou, 202 pp.Google Scholar
  16. Jongepierová I. & Grulich V. 1992. Ohrozenie flóry, pp. 119–158. In: Kuča P., Májsky J., Kopeček F. & Jongepierová I. (eds), Chránená krajinná oblasť Bílé/Biele Karpaty. Ekológia, Bratislava.Google Scholar
  17. Jongepierová I., Mitchley J. & Tzanopoulos J. 2007. A field experiment to recreate species rich hay meadows using regional seed mixtures. Biol. Conserv. 139: 297–305.CrossRefGoogle Scholar
  18. Klimeš L.1997. Druhové bohatství luk v Bílých Karpatech. Sborn. Přírod. Kl. Uherské Hradiště 2: 31–42.Google Scholar
  19. Klimeš L. 2008. Druhové bohatství luk, pp. 89–94. In: Jongepierová I. (ed.), Louky Bílých Karpat, ZO ČSOP Bílé Karpaty, Veselí nad Moravou.Google Scholar
  20. Korvenpää T., von Numers M. & Hinneri S. 2003. A mesoscale analysis of floristic patterns in the south-west Finnish Archipelago. J. Biogeogr. 30: 1019–1031.CrossRefGoogle Scholar
  21. Kubát K., Hrouda L., Chrtek J. jun., Kaplan Z., Kirschner J. & Štěpánek J. (eds) 2002. Klíč ke květeně České republiky. Academia, Praha, 927 pp.Google Scholar
  22. Kühn I., Brandl R. & Klotz S. 2004. The flora of German cities is naturally species rich. Evol. Ecol. Res. 6: 749–764.Google Scholar
  23. Kundrata M. & Kolajová S. 1992. Pôdy, pp. 68–69. In: Kuča P., Májsky J., Kopeček F. & Jongepierová I. (eds), Chránená krajinná oblasť Bílé/Biele Karpaty, Ekológia, Bratislava.Google Scholar
  24. Lososová Z. & Grulich V. 2009. Chorological spectra of arable weed vegetation types in the Czech Republic. Phytocoenologia 39: 235–252.CrossRefGoogle Scholar
  25. Mašát K., Němeček J. & Tomiška Z. 2002. Metodika vymezování a mapování bonitovaných půdně ekologických jednotek. VÚ-MOP, Praha, 113 pp.Google Scholar
  26. McKinney M.L. 2002. Urbanization, biodiversity, and conservation. Bioscience 52: 883–890.CrossRefGoogle Scholar
  27. Němec J. 2000. Lesní vegetace severovýchodni části Bílých Karpat. Ms., MSc. thesis, Masaryk University, Brno, 87 pp.Google Scholar
  28. Niklfeld H. 1999. Mapping the flora of Austria and the eastern Alps. Rev. Valdotaine Hist. Nat., Suppl., 51: 53–62.Google Scholar
  29. Otýpková Z. 2001. Plevelová vegetace Bílých Karpat. Masarykova univerzita, Brno, 140 pp.Google Scholar
  30. Otýpková Z. 2009. The influence of sample plot size on evaluations with Ellenberg indicator values. Biologia 64: 1123–1128.CrossRefGoogle Scholar
  31. Petřík P. 2006. Zdroje floristických údajů v České republice: jak je získat, zpracovat a využít. Zpr. Čes. Bot. Společn. 41: 309–330.Google Scholar
  32. Petřík P. & Wild J. 2006. Environmental correlates of the patterns of plant distribution at the mesoscale: a case study from Northern Bohemia (Czech Republic). Preslia 78: 211–234.Google Scholar
  33. Petřík P., Pergl J. & Wild J. 2009. Recording effort biases the species richness cited in plant distribution atlases. Persp. Pl. Ecol. Evol. Syst. 12: 57–65.Google Scholar
  34. Pyšek P., Jarošík V. & Kučera T. 2002a. Patterns of invasion in temperate nature reserves. Biol. Conserv. 104: 13–24.CrossRefGoogle Scholar
  35. Pyšek P., Sádlo J. & Mandák B. 2002b. Catalogue of alien plants of the Czech Republic. Preslia 74: 97–186.Google Scholar
  36. Pyšek P., Jarošík V., Chytrý M., Kropáč Z., Tichý L. & Wild J. 2005. Alien plants in temperate weed communities: prehistoric and recent invaders occupy different habitats. Ecology 86: 772–785.CrossRefGoogle Scholar
  37. Sádlo J., Chytrý M. & Pyšek P. 2007. Regional species pools of vascular plants in habitats of the Czech Republic. Preslia 79: 303–321.Google Scholar
  38. Sillinger P. 1929. Bílé Karpaty. Nástin geobotanických poměrů se zvláštním zřetelem ke společenstvům rostlinným. Rozpr. Král. Čes. Společ. Nauk, cl. math.-natur., ser. nova, 8/3: 1–73.Google Scholar
  39. Simonová D. & Lososová Z. 2008. Which factors determine plant invasions in man-made habitats in the Czech Republic? Persp. Pl. Ecol. Evol. Syst. 10: 89–100.CrossRefGoogle Scholar
  40. Skalický V. 1988. Regionálně fytogeografické členění, pp.103–121. In: Hejný S. & Slavík B. (eds.), Květena České socialistické republiky, Vol. 1, Academia, Praha.Google Scholar
  41. Staněk S., Jongepierová I. & Jongepier J.W. 1996. Historická květena Bílých Karpat. Sborn. Přírod. Kl. Uherské Hradiště, suppl. 1996: 1–198.Google Scholar
  42. Škodová I., Hájek M., Chytrý M., Jongepierová I. & Knollová I. 2008. Vegetace, pp. 128–177. In: Jongepierová I. (ed.), Louky Bílých Karpat, ZO ČSOP Bílé Karpaty, Veselí nad Moravou.Google Scholar
  43. ter Braak C.J.F. & Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination. Version 4.5. Microcomputer Power, Ithaca, NY, 500 pp.Google Scholar
  44. Tichý L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13: 451–453.CrossRefGoogle Scholar
  45. Tichý L. & Chytrý M. 2006. Statistical determination of diagnostic species for site groups of unequal size. J. Veg. Sci. 17: 809–818.Google Scholar
  46. Tlusták V. 1975. Syntaxonomický přehled travinných společenstev Bílých Karpat. Preslia 47: 129–144.Google Scholar
  47. Tolasz R. et al. 2007. Atlas podnebí Česka (Climate atlas of Czechia). ČHMÚ, Praha, Olomouc, 255 pp.Google Scholar
  48. Wania A., Kühn I. & Klotz S. 2006. Plant richness patterns in agricultural and urban landscapes in Central Germany — spatial gradients of species richness. Landsc. Urb. Plan. 75: 97–110.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Zdenka Otýpková
    • 1
    Email author
  • Milan Chytrý
    • 1
  • Lubomír Tichý
    • 1
  • Vilém Pechanec
    • 2
  • Jan W. Jongepier
    • 3
  • Ondřej Hájek
    • 1
  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Geoinformatics, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  3. 3.ZO ČSOP Bílé KarpatyVeselí nad MoravouCzech Republic

Personalised recommendations