, Volume 65, Issue 6, pp 1019–1027 | Cite as

Species co-occurrences based on a presence/absence null model for Copepoda and cladocerans in Patagonia and Tierra del Fuego lakes and ponds

  • Patricio De los Ríos
  • Andrés Mancilla
  • Marcela Vega
Section Zoology


The zooplankton assemblages in southern Chilean Patagonia are characterized by calanoid dominance and low species number that is observable under oligotrophic status and wide conductivity values, whereas at mesotrophic status the daphnids are dominant with high species number, and finally at hyper-saline environments halophilic species such as Artemia persimilis and/or the calanoid Boeckella poopensis predominate. In the present study data of different lakes and ponds between 45-53° S were analyzed, with the aim to determine potential structures at different sites. For this purpose a null model based in guild structure was applied, considering each guild a different kind of water body (lake, small lake, permanent pond, ephemeral pond, and saline lake). The results revealed in two simulations that guild are structured. These results are similar with other descriptions on the basis of null models that revealed a random pattern of species associations for similar ecosystems due to many species repeated in all or practically all studied sites or similarities of ecological features. Ecological and biogeographical topics were discussed.

Key words

Calanoid Daphnia Artemia lakes ponds null model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelha M.C.F, Goulart E., Kashiwaqui E.A.L. & Da Silva M.R. 2006. Astyanax paranae Eigenmann, 1914 (Characiformes: Characidae) in the Alagados Reservior, Parana, Brazil: diet composition and variation. Neotrop. Ichthyol. 4: 345–356.CrossRefGoogle Scholar
  2. Araya J.M. & Zúñiga L.R. 1985. Manual taxonómico del zooplancton lacustre de Chile. Boletín Limnológico, Universidad Austral de Chile 8, 169 pp.Google Scholar
  3. Bayly I.A.E. 1992a. Fusion of the genera Boeckella and Pseudoboeckella and a revision of their species from South America and Subantarctic islands. Rev. Chil. Hist. Nat. 65: 17–63Google Scholar
  4. Bayly I.A.E. 1992b. The non marine Centropagidae (Copepoda, Calanoida) of the world. Guides for the Identification of Microinvertebrates of Freshwaters of the Continental Waters of the World 2, SPB Academic Publishers, Amsterdam, i–iv, 1–30.Google Scholar
  5. Brték D. & Mura G. 2000. Revised key to families and genera of the anostraca with notes on their geographical distribution. Crustaceana 79: 1037–1088.CrossRefGoogle Scholar
  6. Campos H., Soto D., Parra O., Steffen W. & Agüero G. 1996. Limnological studies of Amarga lagoon, Chile: a saline lake in Patagonia, South America. Int. J. Salt Lake Res. 4: 301–314.CrossRefGoogle Scholar
  7. Campos H., Soto D., Stefen W., Agüero G., Parra O. & Zúñiga L. 1994a. Limnological studies of lake del Toro (Chile): morphometry, physics, chemistry and plankton. Arch. Hydrobiol. 99(Suppl.): 199–215.Google Scholar
  8. Campos H., Soto D., Stefen W., Agüero G., Parra O., Žúñiga L. 1994b. Limnological studies of lake del Sarmiento (Chile): a subsaline lake from Chilean Patagonia. Arch. Hydrobiol. 99(Suppl.): 217–234.Google Scholar
  9. Cañete J. 1999. Determinación de la capacidad de carga del lago Sofía, XII región. Informe Técnico, Fondo de Investigación Pesquera, Chile. FIP-IT/99-26.Google Scholar
  10. Costa de Azevedo M.C., Araujo F.G., Machado A.L. & de Araujo Silva M. 2006. Co-occurrence of demersal fishes in a tropical bay in southeastern Brazil: A null model analysis. Est. Coast. Shelf Sci. 66: 315–322.CrossRefGoogle Scholar
  11. Dartnall J.G. 2005. Freshwater invertebrates of subantarctic South Georgia. J. Nat. Hist. 39: 3321–3342.CrossRefGoogle Scholar
  12. De los Ríos P. 2005. Richness and distribution of crustacean zooplankton species in Chilean Andes mountains and southern Patagonia shallow ponds. Pol. J. Env. Stud. 14: 817–822.Google Scholar
  13. De los Ríos P. 2008. A null model for explain crustacean zooplankton species associations in central and southern Patagonian inland waters. An. Inst. Patagonia 36: 25–33.Google Scholar
  14. De los Ríos P. & Contreras P. 2005. Salinity level for occurrence of calanoids copepods in shallow ponds of South American Altiplano and Chilean Patagonia. Pol. J. Ecol. 53: 445–450.Google Scholar
  15. De los Ríos P. & Crespo J. 2004. Salinity effects on the abundance of Boeckella poopoensis (Copepoda, Calanoida) in saline ponds of the Atacama desert, northern Chile. Crustaceana 77: 417–423.CrossRefGoogle Scholar
  16. De los Ríos P. & Soto D. 2007. Crustacean (Copepoda and Cladocera) zooplankton richness in Chilean Patagonian lakes. Crustaceana 80: 285–296.CrossRefGoogle Scholar
  17. De los Ríos P. & Soto D. 2009. Estudios limnológicos en lagos y lagunas del Parque Nacional Torres del Paine (51° S, Chile). An. Inst. Pat. 37: 63–71.Google Scholar
  18. De los Ríos P. & Zúñiga O. 2000. Comparación biométrica del lóbulo frontal en poblaciones americanas de Artemia (Anostraca: Artemiidae). Rev. Chil. Hist. Nat. 73: 31–38.Google Scholar
  19. De los Ríos P., Acevedo P., Rivera R. & Roa G. 2008a. Comunidades de crustáceos litorales de humedales del norte de la Patagonia chilena (38° S): rol potencial de la exposición a la radiación ultravioleta, pp. 209–229. In: Volpedo A. & Fernandez L. (eds), Efecto de los cambios globales en la diversidad, Programa CYTED 406RT0285.Google Scholar
  20. De los Ríos P., Rivera N. & Galindo M. 2008b. The use of null models to explain zooplancton species associations in shallow water bodies of the Magallanes region, Chile. Crustaceana 81: 1219–1228.CrossRefGoogle Scholar
  21. De los Ríos P., Rogers D. C. & Rivera N. 2008c. Branchinecta gaini (Daday, 1910) (Branchiopoda, Anostraca) as a bioindicator of oligotrophic and low conductivity shallow ponds in southern Chilean Patagonia. Crustaceana 81: 1025–1034.CrossRefGoogle Scholar
  22. Dodson S.I. 1992. Predicting crustacean species richness of crustacean zooplankton species richness. Limnol. Oceanogr. 37: 848–856.CrossRefGoogle Scholar
  23. Franca F.G.R. & Araújo A.F.B. 2007. Are there co-occurrence patterns that structure snake communities in Central Brazil? Braz. J. Biol. 67: 33–40.CrossRefPubMedGoogle Scholar
  24. Frutos S.M. 1998. Densidad y diversidad del zooplancton en los ríos Salado y Negro, planicie del río Paraná- Argentina. Rev. Bras. Biol. 58: 431–444.Google Scholar
  25. Gillooly J.F. & Dodson S.I. 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world freshwater cladocerans. Limnol. Oceanogr. 45: 22–30.CrossRefGoogle Scholar
  26. Gotelli N.J. 2000. Null models of species co-occurrence patterns. Ecology 81: 2606–2621.CrossRefGoogle Scholar
  27. Gotelli N.J. 2001. Research frontiers in null model analysis. Global Ecology Biogeography 10: 337–343.CrossRefGoogle Scholar
  28. Gotelli N.J. & Entsminger G.L. 2009. EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465. (accessed 1.05.2009)
  29. Gotelli N.J. & Graves G.R. 1996. Null Models in Ecology. Smithsonian Institution Press, Washington, DC., 357 pp.Google Scholar
  30. Hannsson L.A., Dartnall H.J., Ellis-Evans J.C., MacAlister H. & Tranvik L.J. 1996. Variations in physical, chemical and biological components in the subantarctic lakes of South Georgia. Ecography 19: 393–404. DOI: 10.1111/j.1600-0587.1996.tb0004.xCrossRefGoogle Scholar
  31. Hurlbert S.H., Loayza W. & Moreno T. 1986. Fish flamingo plankton interactions in the Peruvian Andes. Limnol. Oceanogr. 31: 457–468.CrossRefGoogle Scholar
  32. Hurlbert S.H., López M. & Keith J. 1984. Wilson’s phalarope in the Central Andes and its interaction with the Chilean Flamingo. Rev. Chil. Hist. Nat. 57: 47–57.Google Scholar
  33. Jeppensen E., Lauridsen T.L., Mitchell S.F. & Burns C.W. 1997. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? N. Z. J. Mar. Freshwater Res. 31: 163–173.CrossRefGoogle Scholar
  34. Jeppensen E., Lauridsen T.L., Mitchell S.F., Christoffersen K. & Burns C.W. 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J. Plankt. Res. 22: 951–968.CrossRefGoogle Scholar
  35. Luiselli L. 2007. Community ecology of African reptiles: historical perspective and a meta-analysis using null model. Afr. J. Ecol. 46: 384–394.CrossRefGoogle Scholar
  36. Luiselli L. 2008a. Do lizard communities partition the trophic niche? A world wide meta-analysis using null models. Oikos 117: 321–330. DOI: 10.1111/j.2007.0030-1299.16297.xCrossRefGoogle Scholar
  37. Luiselli L. 2008b. Resource partitioning in freshwater turtle communities: a null model meta-analysis of available data. Acta Oecol. 34: 80–88. DOI: 10.1016/j.actao.2008.04.001CrossRefGoogle Scholar
  38. Luiselli L., Eniang E.A. & Akani G.C. 2007. Non-random structure of a guild of geckos in a fragmented, human altered, African rain forest. Ecol. Res. 22: 593–603.CrossRefGoogle Scholar
  39. Menu-Marque S., Morrone J.J. & Locascio de Mitrovich C. 2000. Distributional patterns of South American species of Boeckella (Copepoda, Centropagidae): a track analysis. J. Crust. Biol. 20: 262–272.CrossRefGoogle Scholar
  40. Modenutti B.E., Balseiro E.G., Queimaliños C.P., Suarez D.A., Dieguez M.C. & Albariño R.J. 1998. Structure and dynamics of food webs in Andean lakes. Lak. Reserv. Res. Manag. 3: 179–186.CrossRefGoogle Scholar
  41. Niemeyer H. & Cereceda P. 1984. Hidrografěa. Geografía de Chile, Vol.VIII. Chilean Military Geographic Institute, Santiago de Chile, 320 pp.Google Scholar
  42. Paggi J.C. 1999. Status and phylogenetic relationships of Daphnia sarsi Daday 1902 (Crustacea, Anomopoda). Hydrobiologia 403: 27–37.CrossRefGoogle Scholar
  43. Pugh P.J.A., Dartnall H. & Mcinnes S.J. 2002. The non-marine Crustacea of Antarctica and the islands of the Southern Ocean: biodiversity and biogeography. J. Nat. Hist. 36: 1047–1103.CrossRefGoogle Scholar
  44. Reid J. 1985. Chave de identificao e lista de referencias bibliográficas para as especies continentais sudamericanas de vida libre da orden Cyclopoida (Crustacea, Copepoda). Bol. Zool. Univ. Sao Paulo. 9: 17–143.Google Scholar
  45. Ribas C.R. & Schoereder J.H. 2002. Are all ants mosaics caused by competition? Oecologia 131: 606–611. DOI: 10.1007/s00442-002-0912-xCrossRefGoogle Scholar
  46. Rodríguez-Fernandez J.I., Barros de Carvalho C.J. & Moura M.O. 2006. Estrutura de asembleias de Muscidae (Diptera) no Paraná: uma análise por modelos nulos. Rev. Bras. Entomol. 50: 93–100.CrossRefGoogle Scholar
  47. Rogers D.C., De los Ríos P. & Zúñiga O. 2008. Fairy shrimp (Crustacea, Branchiopoda, Anostraca) of Chile. J. Crust. Biol. 28: 551–563.CrossRefGoogle Scholar
  48. Sanders N.J., Crutsinger G.M., Majer R.R. & Delabie J.H.C. 2007. An ant mosaic revisited: dominant ant species dissemble arboreal ant communities but co-occur randomly. Biotropica 39: 422–427.CrossRefGoogle Scholar
  49. Segurado P. & Fiqueiredo D. 2007. Coexistence of two freshwater turtle species along a Mediterranean stream: the role of spatial and temporal heterogeneity. Acta Oecol. 32: 134–144. DOI: 10.1016/j.actao.2007.03.015CrossRefGoogle Scholar
  50. Soto D. 1990. Biomasa zooplanctónica de lagunas Patagónicas y su relación con el flamenco Chileno (Phoenicopterus chilensis), pp. 84–102. In: Actas Primer Taller Internacional de Especialistas en Flamencos Sudamericanos, San Pedro de Atacama, Chile.Google Scholar
  51. Soto D., Campos H., Steffen W., Parra O. & Zúñiga L. 1994. The Torres del Paine lake district (Chilean Patagonia): a case of potentially N-limited lakes and ponds. Arch. Hydrobiol. 99: 181–197.Google Scholar
  52. Soto D. & De los Ríos P. 2006. Trophic status and conductitivity as regulators of daphnids dominance and zooplankton assemblages in lakes and ponds of Torres del Paine National Park. Biologia 61: 541–546.CrossRefGoogle Scholar
  53. Soto D. & Zúñiga L. 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Rev. Chil. Hist. Nat. 64: 569–546.Google Scholar
  54. Tiho S. & Johens J. 2007. Co-occurrence of earthworms in urban surroundings: a null models of community structure. Eur. J. Soil Biol. 43: 84–90. DOI: 10.1016/j.ejsobi.2006.10.004CrossRefGoogle Scholar
  55. Tondoh J.E. 2006. Seasonal changes in earthworm diversity and community structure in central Côte d’Ivoire. Eur. J. Soil Biol. 42(Suppl. 1): S334–S340. DOI: 10.1016/j.ejsobi.2006.09.003CrossRefGoogle Scholar
  56. Villalobos L. 1999. Determinación de capacidad de carga y balance de fósforo y nitrógeno de los lagos Riesco, Los Palos y Laguna Escondida en la XI región. Informe Técnico, Fondo de Investigación Pesquera, Chile FIP-IT/97-39.Google Scholar
  57. Ulrich W. 2004. Species co-occurrences and neutral models: reassessing J.M. Diamond’s assembly rules. Oikos 107: 603–609. DOI: 10.1111/j.0030-1299.2004.12981.xCrossRefGoogle Scholar
  58. Williams W.D., Carrick T.R., Bayly I.A.E., Green J. & Herbst D.B. 1995. Invertebrates of salt lakes of the Bolivian Altiplano. Int. J. Salt Lake Res. 4: 65–77.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Patricio De los Ríos
    • 1
  • Andrés Mancilla
    • 2
  • Marcela Vega
    • 1
  1. 1.Laboratorio de Limnología y Recursos Hídricos, Escuela de Ciencias Ambientales, Facultad de Recursos NaturalesUniversidad Católica de TemucoTemucoChile
  2. 2.Instituto de la PatagoniaUniversidad de MagallanesPunta ArenasChile

Personalised recommendations