, Volume 65, Issue 5, pp 813–816 | Cite as

Karyotype study in Luzuriaga radicans (Liliales: Luzuriagaceae)

  • Pedro Jara-Seguel
  • Cristina Zúñiga
  • Mario Romero-Mieres
  • Claudio Palma-Rojas
  • Elisabeth von Brand
Section Botany


The karyotype of Luzuriaga radicans R. & P. was quantitatively studied, assessing characters such as chromosome morphology and size, satellite location, asymmetry level and bimodality. L. radicans has an asymmetric and bimodal karyotype 2n = 20 with three metacentric pairs, followed by six submetacentric and one subtelocentric chromosome pair. One satellite was observed in the short arm of chromosome pair 6. The total haploid set length was 48.7 μm and the mean chromosome size was 4.87 ± 2.35 μm. Comparing L. radicans with other two species of the genus a high resemblance among their karyotypes was found.

Key words

Luzuriaga radicans Luzuriagaceae karyotype asymmetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arroyo S. & Leuenberger B. 1988a. Leaf morphology and taxonomic history of Luzuriaga (Philesiaceae). Willdenowia 17: 159–172.Google Scholar
  2. Arroyo S. & Leuenberger B. 1988b. A note on Luzuriaga marginata (Philesiaceae) from Patagonia. Herbertia 44: 17–21.Google Scholar
  3. Arroyo-Leuenberger S. 2001. Flora Fanerogámica Argentina: Philesiaceae, Asteliaceae y Luzuriagaceae. Pro-Flora CONICET 72: 1–7.Google Scholar
  4. Beuzenberg E. & Hair B. 1963. Contributions to a chromosome atlas of the New Zealand flora — 5, miscellaneous families. New Zeal. J. Bot. 1: 53–67.Google Scholar
  5. Buitendijk J., Boon E. & Ramanna M. 1997. Nuclear DNA content in twelve species of Alstroemeria L. and some of their hybrids. Ann. Bot. 79: 343–353.CrossRefGoogle Scholar
  6. Jara-Seguel P. & Zúñiga C. 2004. El cariotipo de Lapageria rosea Ruiz et Pav. (Liliales: Philesiaceae). Gayana Bot. 61(2): 76–78.CrossRefGoogle Scholar
  7. Jara-Seguel P. & Zúñiga C. 2005. Chromosome numbers in Chilean species of Luzuriaga Ruiz et Pav. (Luzuriagaceae). Gayana Bot. 62(1): 53–55.CrossRefGoogle Scholar
  8. Kamstra S., de Jong J., Jacobsen E., Ramanna M. & Kuipers A. 2004. Meiotic behaviour of individual chromosomes in allotriploid Alstroemeria hybrids. Heredity 93: 15–21.CrossRefPubMedGoogle Scholar
  9. Levan A., Fredga K. & Sandberg A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.CrossRefGoogle Scholar
  10. Levin D. 2002. The role of chromosome change in plant evolution. New York: Oxford University Press.Google Scholar
  11. Moore D. 1967. Chromosome numbers of Falkland Islands Angiosperms. In: Brit. Antarct. Surv. B. 14: 69–82.Google Scholar
  12. Navarrete M., Secadas E. & Martin S. 1983. Análisis citofotométrico de las condiciones óptimas de la tinción de Feulgen. Morfología Normal y Patológica 7(2): 239–247.Google Scholar
  13. Palma-Rojas C., Jara-Seguel P. & von Brand E. 2007. Karyological studies in Chilean species of Bomarea Mirb. and Leontochir Phil. (Alstroemeriaceae). New Zeal. J. Bot. 45: 299–303.Google Scholar
  14. Paszko B. 2006. A critical review and a new proposal of karyotype asymmetry indices. Pl. Syst. Evol. 258: 39–48.CrossRefGoogle Scholar
  15. Peruzzi L., Leitch I. & Caparelli K. 2009. Chromosome diversity and evolution in Liliaceae. Ann. Bot. 103: 459–475.CrossRefPubMedGoogle Scholar
  16. Rodríguez R. & Marticorena C. 1987. Las especies del género Luzuriaga R. et P. Gayana Bot. 44: 3–15.Google Scholar
  17. Sanso M. 2002. Chromosome studies in Andean taxa of Alstroemeria (Alstroemeriaceae). Bot. J. Linn. Soc. 138: 451–459.CrossRefGoogle Scholar
  18. Sato D. 1943. Karyotype alteration and phylogeny in Liliaceae and allied families. Japan. J. Bot. 12: 57–161.Google Scholar
  19. Schwarzacher T., Leitch A., Bennett M. & Heslop-Harrison J. 1989. In situ localization of parental genomes in a wild hybrid. Ann. Bot. 64: 315–324.Google Scholar
  20. Spotorno A. 1985. Conceptos y métodos en cariología descriptiva y comparada, pp. 135–163. In: Fernández-Donoso R. (ed.), El núcleo, los cromosomas y la evolución. UNESCO.Google Scholar
  21. Tamura M. 1995. A karyological review of the orders Asparagales and Liliales (Monocotyledonae). Feddes Repertorium 106: 83–111.CrossRefGoogle Scholar
  22. Teillier S., Urzúa A. & Niemeyer H. 2008. Chemical and morphological study of a putative hybrid between Luzuriaga radicans and L. polyphylla (Monocotyledoneae: Luzuriagaceae). New Zeal. J. Bot. 46: 321–326.Google Scholar
  23. Zhou S., de Jeu M., Visser R. & Kuiper A. 2003. Characterisation of distant Alstroemeria hybrids: application of highly repetitive DNA sequences from A. ligtu ssp. ligtu. Ann. Appl. Biol. 142: 277–283.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Pedro Jara-Seguel
    • 1
  • Cristina Zúñiga
    • 1
  • Mario Romero-Mieres
    • 1
  • Claudio Palma-Rojas
    • 2
  • Elisabeth von Brand
    • 3
  1. 1.Escuela de Ciencias Ambientales, Facultad de Recursos NaturalesUniversidad Católica de TemucoCasillaTemuco-Chile
  2. 2.Departamento de Biología, Facultad de CienciasUniversidad de La SerenaCasillaLa Serena-Chile
  3. 3.Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCasillaCoquimbo, Chile

Personalised recommendations