Biologia

, Volume 65, Issue 3, pp 388–391 | Cite as

Ribosomal RNA phylogenetics: the third dimension

Section Cellular and Molecular Biology
  • 86 Downloads

Abstract

With integration of secondary structures, ribosomal genes have once again become very popular for phylogenetic analyses. This additional source of information to the nucleotide sequence provides a massive boost for taxonomic inferences. Herein, we propose that in the near future a further benefit for phylogenetics with such genes will be very likely by inclusion of the third dimension. For the first time, we determined the tertiary structure of the ribosomal internal transcribed spacer 2 for Chlamydomonas rheinhardtii by application of two different in silico prediction algorithms. We compared these methods with focus on phylogenetic usability. Further, we determined the tertiary structures for closely related green algae to provide a small phylogenetic example. The results suggest that the tertiary structure inherits evolutionary information observable neither within the sequence nor in the secondary structure.

Key words

molecular systematics internal transcribed spacer 2 ITS2 non-coding RNA secondary structure tertiary structure 

Abbreviations

ITS2

internal transcribed spacer 2

PDB

Protein Data Bank

RMSD

root mean square deviation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon R.N., Mirny L., Sussman J.L. & Gutnick D.L. 1995. Detection of α/β-hydrolase fold in the cell surface esterases of Acinetobacter species using an analysis of 3D profiles. FEBS Lett. 371: 231–235.CrossRefPubMedGoogle Scholar
  2. Biffin E., Harrington M.G., Crisp M.D., Craven L.A. & Gadek P.A. 2007. Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae. Mol. Phylogenet. Evol. 43: 124–139.CrossRefPubMedGoogle Scholar
  3. Brown J.W., Birmingham A., Griffiths P.E., Jossinet F., Kachouri-Lafond R., Knight R., Lang B.F., Leontis N., Steger G., Stombaugh J. & Westhof E. 2009. The RNA structure alignment ontology. RNA 15: 1623–1631.CrossRefPubMedGoogle Scholar
  4. Byun Y. & Han K. 2009. PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics 25: 1435–1437.CrossRefPubMedGoogle Scholar
  5. Carugo O. & Pongor S. 2002. Recent progress in protein 3D structure comparison. Curr. Protein Pept. Sci. 3: 441–449.CrossRefPubMedGoogle Scholar
  6. Côté C., Greer C. & Peculis B.A. 2002. Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast. RNA 8: 786–797.CrossRefPubMedGoogle Scholar
  7. Grajales A., Aguilar C. & Sanchez J.A. 2007. Phylogenetic reconstruction using secondary structures of Internal Transcribed Spacer 2 (ITS2, rDNA): finding the molecular and morphological gap in Caribbean gorgonian corals. BMC Evol. Biol. 7: 90.CrossRefPubMedGoogle Scholar
  8. Jossinet F., Ludwig T.E. & Westhof E. 2007. RNA structure: bioinformatic analysis. Curr. Opin. Microbiol. 10: 279–285.CrossRefPubMedGoogle Scholar
  9. Jossinet F. & Westhof E. 2005. Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21: 3320–3321.CrossRefPubMedGoogle Scholar
  10. Hasegawa H. & Holm L. 2009. Advances and pitfalls of protein structural alignment. Curr. Opin. Struct. Biol. 19: 341–348.CrossRefPubMedGoogle Scholar
  11. Henrick K., Feng Z., Bluhm W.F., Dimitropoulos D., Doreleijers J.F., Dutta S., Flippen-Anderson J.L., Ionides J., Kamada C., Krissinel E., Lawson C.L., Markley J.L., Nakamura H., Newman R., Shimizu Y., Swaminathan J., Velankar S., Ory J., Ulrich E.L., Vranken W., Westbrook J., Yamashita R., Yang H., Young J., Yousufuddin M. & Berman H.M. 2008. Remediation of the protein data bank archive. Nucleic Acids Res.36(Database Issue): D426–D433.PubMedGoogle Scholar
  12. Keller A., Forster F., Muller T., Dandekar T., Schultz J. & Wolf M. 2010. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol. Direct 5: 4.CrossRefPubMedGoogle Scholar
  13. Keller A., Schleicher T., Förster F., Ruderisch B., Dandekar T., Müller T. & Wolf M. 2008. ITS2 data corroborate a monophyletic chlorophycean DO-group (Sphaeropleales). BMC Evol. Biol. 8: 218.CrossRefPubMedGoogle Scholar
  14. Koetschan C., Förster F., Keller A., Schleicher T., Ruderisch B., Schwarz R., Müller T., Wolf M. & Schultz J. 2010. The ITS2 Database III — sequences and structures for phylogeny. Nucleic Acids Res. 38 (Database Issue): D275–D279.CrossRefPubMedGoogle Scholar
  15. Kroemer R.T., Kröncke R., Gerdes J. & Richards W.G. 1998. Comparison of the 3D models of four different human IL-7 isoforms with human and murine IL-7. Protein Eng. 11: 31–40.CrossRefPubMedGoogle Scholar
  16. Martinez H.M., Maizel J.V. Jr. & Shapiro B.A. 2008. RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J. Biomol. Struct. Dyn. 25: 669–683.PubMedGoogle Scholar
  17. Parisien M., Cruz J.A., Westhof E. & Major F. 2009. New metrics for comparing and assessing discrepancies between RNA 3D structures and models. RNA 15: 1875–1885.CrossRefPubMedGoogle Scholar
  18. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C. & Ferrin T.E. 2004. UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. 25: 1605–1612.CrossRefPubMedGoogle Scholar
  19. Pley H.W., Flaherty K.M. & McKay D.B. 2002. Three-dimensional structure of a hammerhead ribozyme. Nature 372: 68–74.CrossRefGoogle Scholar
  20. Schultz J. & Wolf M. 2009. ITS2 sequence-structure analysis in phylogenetics: a how-to manual for molecular systematics. Mol. Phylogenet. Evol. 52: 520–523.CrossRefPubMedGoogle Scholar
  21. Shapiro B.A., Yingling Y.G., Kasprzak W. & Bindewald E. 2007. Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol. 17: 157–165.CrossRefPubMedGoogle Scholar
  22. Venema J. & Tollervey D. 1999. Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 33: 261–311.CrossRefPubMedGoogle Scholar
  23. Wolf M., Ruderisch B., Dandekar T., Schultz J. & Müller T. 2008. ProfDistS: (Profile-) distance based phylogeny on sequence-structure alignments. Bioinformatics 24: 2401–2402.CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Alexander Keller
    • 1
  • Matthias Wolf
    • 1
  • Thomas Dandekar
    • 1
  1. 1.Department of BioinformaticsUniversity of WürzburgWürzburgGermany

Personalised recommendations