Biologia

, 64:1047 | Cite as

Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3

  • Keni Vidilaseris
  • Karina Hidayat
  • Debbie S. Retnoningrum
  • Zeily Nurachman
  • Achmad Saefuddin Noer
  • Dessy Natalia
Section Cellular and Molecular Biology
  • 121 Downloads

Abstract

An Indonesian marine bacterial isolate, which belongs to genus of Bacillus sp. based on 16S rDNA analysis and was identified as Bacillus filicolonicus according to its morphology and physiology, produced a raw starch degrading α-amylase. The partially purified α-amylase using a maize starch affinity method exhibited an optimum pH and temperature of 6.0 and 60°C, respectively. The enzyme retained 72% of its activity in the presence of 1.5 M NaCl. Scanning electron micrographs showed that the α-amylase was capable of degrading starch granules of rice and maize. This α-amylase from Bacillus sp. ALSHL3 was classified as a saccharifying enzyme since its major final degradation product was glucose, maltose, and maltotriose.

Key words

α-amylase Bacillus filicolonicus raw starch maize marine 

Abbreviations

DNSA

dinitrosalicylic acid

MB

marine broth

SBD

starch-binding domain

References

  1. Abe A., Tonozuka T., Sakano Y. & Kamitori S. 2004. Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol. 335: 811–822.CrossRefPubMedGoogle Scholar
  2. Asgher M., Asad M.J., Rahman S.U. & Legge R.L. 2007. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950–955.CrossRefGoogle Scholar
  3. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248–254.CrossRefPubMedGoogle Scholar
  4. Buchanan R.E., Gibbons N.E., Cowan S.T., Holt J.G., Liston J., Muray R.G.E., Niven C.F., Ravin A.W. & Stanier R.W. 1974. Bergey’s Manual of Determinative Bacteriology, 8th Edition. The Williams and Wilkins Company, Baltimore.Google Scholar
  5. Cho H.Y., Kim Y.W., Kim T.J., Lee H.S., Kim D.Y., Kim J.W., Lee Y.W., Lee S.B. & Park K.H. 2000. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta. 1478: 333–340.PubMedGoogle Scholar
  6. Demirkan E.S., Mikami B., Adachi M., Higasa T., Utsumi S. 2005. α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochem. 40: 2629–2636.CrossRefGoogle Scholar
  7. Fuwa H. 1954. A new method for microdetermination of amylase activity by the use of amylose as a substrate. J. Biochem. 21: 219–230.Google Scholar
  8. Gupta R., Gigras P., Mohapatra H., Goswami V.K. & Chauhan B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38: 1599–1616.CrossRefGoogle Scholar
  9. Hamilton L.M., Kelly C.T. & Fogarty W.M. 1998. Raw starch degradation by the non-raw starch-adsorbing bacterial α-amylase of Bacillus sp. IMD 434. Carbohydr. Res. 314: 251–257.CrossRefGoogle Scholar
  10. Hayashida S., Teramoto Y. & Inoue T. 1988. Production and characteristics of raw potato starch digesting amylase from Bacillus subtilis 65. Appl. Environ. Microbiol. 54: 1516–1522.PubMedGoogle Scholar
  11. Ivanova V., Dobreva E. & Emanuilova E. 1993. Purification and characterization of thermostable α-amylase from Bacillus licheniformis. J. Biotechnol. 28: 277–289.CrossRefGoogle Scholar
  12. Janecek S. & Sevcik J. 1999. The evolution of starch-binding domain. FEBS Lett. 456: 119–125.CrossRefPubMedGoogle Scholar
  13. Kiran K.K. & Chandra T. S. 2008. Production of surfactant and detergent-stable, halophilic, and alkalitolerant α-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl. Microbiol. Biotechnol. 77: 1023–1031.CrossRefPubMedGoogle Scholar
  14. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature227: 680–68CrossRefPubMedGoogle Scholar
  15. Lo H.F., Lin L.L., Chiang W.Y., Chie M.C., Hsu W.H. & Chang C.T. 2002. Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch. Microbiol. 178: 115–123.CrossRefPubMedGoogle Scholar
  16. MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1–20.PubMedGoogle Scholar
  17. Machovic M. & Janecek S. 2006. The evolution of putative starch binding domains. FEBS Lett. 580: 6349–6356.CrossRefPubMedGoogle Scholar
  18. Malhotra R., Noorvez S.M. & Satyanarayana T. 2000. Production and partial characterization of thermostable and calcium independent α-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol. 31: 378–384.CrossRefPubMedGoogle Scholar
  19. Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426 428.Google Scholar
  20. Mohapatra B.R., Banerjee U.C. & Bapuji M. 1998. Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J. Biotechnol. 60: 113–117.CrossRefGoogle Scholar
  21. Najafi M.F., Deobagkar D. & Deobagkar D. 2005. Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20. Protein Expr. Purif. 41: 349–354.CrossRefPubMedGoogle Scholar
  22. Najafi M.F. & Kembhavi A. 2005. One step purification and characterization of an extracellular amylase from marine Vibrio sp. Enzyme Microb. Technol. 36: 535–539.CrossRefGoogle Scholar
  23. Robyt J.F. 1998. Essentials of Carbohydrate Chemistry. Springer, Boston, 399 pp.Google Scholar
  24. Sodhi H.K., Sharma K., Gupta J.K. & Soni S.K. 2005. Production of a thermostable amylase by solid-state fermentation and its synergistic use in the hydrolysis of malt strarch for alcohol production. Process Biochem. 40: 525–534.CrossRefGoogle Scholar
  25. Van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M., Leemhuis H. & Dijkhuizen L. 2002. Properties and application of starch converting enzymes of the amylase family. J. Biotechnol. 94: 137–155.CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Keni Vidilaseris
    • 1
  • Karina Hidayat
    • 1
  • Debbie S. Retnoningrum
    • 2
    • 3
  • Zeily Nurachman
    • 1
  • Achmad Saefuddin Noer
    • 1
  • Dessy Natalia
    • 1
    • 3
  1. 1.Biochemistry Division, Faculty of Mathematics and Natural SciencesBandung Institute of TechnologyBandungIndonesia
  2. 2.School of PharmacyBandung Institute of TechnologyBandungIndonesia
  3. 3.Centre for Life SciencesBandung Institute of TechnologyBandungIndonesia

Personalised recommendations