Advertisement

Biologia

, 64:1123 | Cite as

The influence of sample plot size on evaluations with Ellenberg indicator values

  • Zdenka OtýpkováEmail author
Section Botany

Abstract

The effect of plot size was tested on heterogeneous and homogeneous data sets that were obtained by sampling grassland and forest vegetation on plots differing in size. Mean EIV for relevés revealed no differences among data sets from various plot sizes or between homogeneous and heterogeneous data sets. This is probably due to a similar indicator value for species newly occurring in plots with increasing plot size. Using EIV is thus a robust method even for data sets associated with wide range of plot sizes.

Key words

data set heterogeneity ecological indicators Ellenberg indicator values plot size 

References

  1. Allen T.F.H., Sadowsky D.A. & Woodhead N. 1984. Data transformation as a scaling operation in ordination of plankton. Vegetatio 56: 147–160.Google Scholar
  2. Bennie J., Hill M.O., Baxter R. & Huntley B. 2006. Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J. Ecol. 94: 355–368.CrossRefGoogle Scholar
  3. Chiarucci A., De Dominicis V. & Wilson J.B. 2001. Structure and floristic diversity in permanent monitoring plots in forest ecosystems of Tuscany. For. Ecol. Management 141: 201–210.CrossRefGoogle Scholar
  4. Chytrý M. & Rafajová M. 2003. Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75: 1–15.Google Scholar
  5. Chytrý M. Tichý L. & Roleček J. 2003. Local and regional patterns of species richness in central European vegetation types along the pH/calcium gradient. Folia Geobot. 38: 429–442.CrossRefGoogle Scholar
  6. Cornwell W.K. & Grubb P.J. 2003. Regional and local patterns in plant species richness with respect to source availability. Oikos 100: 417–428.CrossRefGoogle Scholar
  7. Decocq G., Aubert M., Dupont F., Alard D., Saguez R., Wattez-Franger A., de Foucault B., Delelis-Dusollier A. & Bardat J. 2004. Plant diversity in a managed temperate deciduous forests: understorey response to two silvicultural systems. J. Appl. Ecol. 41: 1065–1079.CrossRefGoogle Scholar
  8. Diekmann M. 1995. Use and improvement of Ellenberg’s indicator values in deciduous forests of the Boreo-nemoral zone in Sweden. Ecography 18: 178–189.CrossRefGoogle Scholar
  9. Diekmann M. 2003. Species indicator values as an important tool in applied plant ecology — a review. Basic Appl. Ecol. 4: 493–506.CrossRefGoogle Scholar
  10. Ejrnæs R. Hansen D.N. & Aude E. 2003. Changing course of secondary succession in abandoned sandy fields. Biol. Cons. 109: 343–350.CrossRefGoogle Scholar
  11. Ellenberg H. 1979. Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scripta Geobot. 9: 1–97.Google Scholar
  12. Ellenberg H., Weber H.E., Düll R., Wirth W., Werner W. & Paulißen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. 2nd ed. Scripta Geobot. 18: 1–258.Google Scholar
  13. Ertsen A.C.D., Alkemade J.R.M. & Wassen M.J. 1998. Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Plant Ecol. 135: 113–124.CrossRefGoogle Scholar
  14. Ewald J. 2003a. The calcareous riddle: Why are there so many calciphilous species in the Central European flora? Fol. Geobot. 38: 357–366.CrossRefGoogle Scholar
  15. Ewald J. 2003b. The sensitivity of Ellenberg indicator values to the completeness of vegetation relevés. Basic Appl. Ecol. 4: 507–513.CrossRefGoogle Scholar
  16. Hédl R. 2004. Vegetation of beech forests in the Rychlebské Mountains, Czech Republic, re-inspected after 60 years with assessment of environmental changes. Pl. Ecol. 170: 243–265.CrossRefGoogle Scholar
  17. Käfer J. & Witte J-P.M. 2004. Cover-weighted averaging of indicator values in vegetation analyses. J. Veget. Sci. 15: 647–652.CrossRefGoogle Scholar
  18. Kelly V. & Canham C.D. 1992. Resource heterogeneity in old fields. J. Veg. Sci. 3: 545–552.CrossRefGoogle Scholar
  19. Knollová I. 2004. Změny luční a pastvinné vegetace Hostýnských vrchů 1969–2002. Příroda 21: 209–218.Google Scholar
  20. Lennon J.J., Koleff P., Greenwood J.J.D. & Gaston K.J. 2001. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol. 70: 966–979.CrossRefGoogle Scholar
  21. Lososová Z., Chytrý M., Cimalová Š., Kropáč Z., Otýpková Z., Pyšek P. & Tichý L. 2004. Weed vegetation of arable land in the Czech Republic and Slovakia: gradients of diversity and species composition. J. Veg. Sci. 15: 415–422.CrossRefGoogle Scholar
  22. Moravec J. 1973. The detemination of the minimal area of phytocenoses. Folia Geobot. Phytotax. 8: 23–47.Google Scholar
  23. Øland R.H., Eilertsen O. & Økland T. 1990. On the relationship between sample plot size and beta diversity in boreal coniferous forest. Vegetatio 87: 187–192.CrossRefGoogle Scholar
  24. Otýpková Z. & Chytrý M. 2006a. Effect of plot size on the ordination of vegetation samples. J. Veg. Sci. 17: 465–472.CrossRefGoogle Scholar
  25. Otýpková Z. & Chytrý M. 2006b. Effects of plot size and heterogeneity of vegetation data sets on assessment of evenness and β-diversity. Ms. (Ph.D. thesis, Depon. in: Dept. Bot. Zool., MU, Brno).Google Scholar
  26. Palmer M.W. & Dixon P.M. 1990. Small-scale environmental heterogeneity and the analysis of species distributions along gradients. J. Veg. Sci. 1: 57–65.CrossRefGoogle Scholar
  27. Persson S. 1981. Ecological indicator values as an aid in the interpretation of ordination diagram. J. Ecol. 69: 71–84.CrossRefGoogle Scholar
  28. Robertson G.P., Hutson M.A., Evans F.C. & Tiedje J.M. 1988. Spatial variability in a successional plant community: Patterns of nitrogen availability. Ecology 69: 1517–1524.CrossRefGoogle Scholar
  29. Rosenzweig M.L. 1995. Species diversity in space and time. Cambridge Univ. Press, Cambridge, 437 pp.Google Scholar
  30. Smart S.M. & Scott W.A. 2004. Bias in Ellenberg indicator values — problems with detection of the effect of vegetation type. J. Veget. Sci. 15: 843–846.Google Scholar
  31. Thompson K., Hodgson J.G., Grime J.P., Rorison I.H., Band S.R. & Spencer R.E. 1993. Ellenberg numbers revisited. Phytocoenologia 23: 277–289.Google Scholar
  32. Tichý L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13: 451–453.CrossRefGoogle Scholar
  33. van der Maarel 1993. Relations between sociological-ecological species groups and Ellenberg indicator values. Phytocoenologia 23: 343–362.Google Scholar
  34. Wamelink G.W.W., Joosten V., van Dobben H.F. & Berendse F. 2002. Validity of Ellenberg indicator values judged from physico-chemical field measurements. J. Veget. Sci. 13: 269–278.CrossRefGoogle Scholar
  35. Wilson S.D. 2000. Heterogeneity, diversity and scale in plant communities, pp. 53–69. In: Hutchings M.J., John E.A. & Stewart A.J.A. (eds), The ecological consequences of environmental heterogeneity, Blackwell Science, London.Google Scholar
  36. Wittig R., Ballach, H.J. & Brandt C.J. 1985. Increase of number of acid indicators in the herb layer of the Miller grass-beech forest of the Westphalian Bight. Angewandte Botanik 59: 219–232.Google Scholar
  37. Wohlgemuth T. & Gigon A. 2003. Calcicole plant diversity in Switzerland may reflect a variety of habitat templets. Folia Geobot. 38: 443–452.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Botany and ZoologyFaculty of Science Masaryk UniverzityBrnoCzech Republic

Personalised recommendations