Advertisement

Biologia

, Volume 64, Issue 5, pp 908–918 | Cite as

Diversity of subalpine and alpine vegetation of the eastern part of the Nízke Tatry Mts in Slovakia: major types and environmental gradients

  • Lucia SekulováEmail author
  • Michal Hájek
Section Botany

Abstract

Changes in composition and structure of alpine and subalpine plant communities in relation to ecological factors were analysed in the Nízke Tatry Mts, Slovakia. Species cover values of vascular and non-vascular plants in each vegetation plot were recorded on the nine-degree scale. A data set of 156 relevés of alpine and subalpine vegetation was sampled recently during one year in the eastern part of the Nízke Tatry National Park. The data set was analysed by cluster analysis and Detrended Correspondence Analysis. analyses were carried out on the entire data set, including the subset of short grassland and dwarf-shrub vegetation. Major gradients and clusters were ecologically interpreted using Ellenberg indicator values. In the entire data set, the major gradient in species composition was associated with nutrient availability and the second most important gradient with light. In the case of short grassland and dwarf-shrub vegetation, the gradients were different. The first one was associated with soil reaction and the second gradient was associated with moisture. Clusters proposed by numerical classification reproduced many traditional phytosociological associations, namely Seslerietum distichae, Sphagno capillifolii-Empetretum nigri, Junco trifidi-Callunetum vulgaris, Juncetum trifidi, Dryopterido dilatatae-Pinetum mugo, Luzuletum obscurae, Agrostio pyrenaiceae-Nardetum strictae, while some other associations were less clearly differentiated (communities of the alliances Calamagrostion villosae, Adenostylion alliariae, Trisetion fusci, Cratoneuro filicini-Calthion laetae or Salicion herbaceae). The next clusters included Vaccinium and Festuca supina dominated communities and artificial roadside grasslands sown 50 years ago. Bryophytes and lichens were highly represented among diagnostic species of particular associations. Distribution pattern of particular plant communities was strongly influenced by site position either on northern or southern slope of the mountains.

Key words

alpine vegetation gradients Ellenberg indicators ordination phytosociology Nízke Tatry Mts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Averis A.M., Averis A.B.G., Birks H.J.B., Horsfield D., Thompson B.A. & Yeo M.J.M. 2004. An Illustrated Guide to British Upland Vegetation. Joint Nature Conservation Committee, Peterborough, UK, 470 pp.Google Scholar
  2. Barkman J.J., Doing H. & Segal S. 1964. Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Bot. Neerl. 13: 394–419.Google Scholar
  3. Braun-Blanquet J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. 3. neubearbeitete und wesentlich verm. Auflage, Springer, Wien, 865 pp.Google Scholar
  4. Charman D. 2002. Peatlands and Environmental Change, John Wiley and Sons Ltd., West Sussex, England, 312 pp.Google Scholar
  5. Chytrý M., Tichý L., Holt J. & Botta-Dukát Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13: 79–90.CrossRefGoogle Scholar
  6. Doležal J. & Šrůtek M. 2002. Altitudinal changes in composition and structure of mountain-temperate vegetation: a case study from the Western Carpathians. Plant Ecology 158: 201–221.CrossRefGoogle Scholar
  7. Domin K. 1921. Rukopisné poznámky ke květeně okolí Královy holy. In: Materiály ke květeně ČSR. BÚ ČSAV Průhonice.Google Scholar
  8. Dúbravcová Z. 1982. Asociácia Juncetum trifidi Szaf.-Pawt.-Kulcz. 1923 emend. Kraj. 1933 v Západných Tatrách. Biológia, Bratislava, 37: 477–486.Google Scholar
  9. Dúbravcová Z. 1983. Alpínska a subalpínska vegetácia centrálnej časti Nízkych Tatier (žula). Mscr., partial report, depon. in Správa NP NT, Banská BystricaGoogle Scholar
  10. Dúbravcová Z., Jarolímek I., Kliment J., Petrík A., Šibík J. & Valachovič M. 2005. Alpine heaths in the Western Carpathians — a new approach to their classification. Annali di Botanica: Nuova Serie, Roma, 5: 41–48.Google Scholar
  11. Ellenberg H., Weber H.E., Düll R., Wirth W., Werner W. & Paulißen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, Göttingen, 18: 1–258.Google Scholar
  12. Forbes B.C. 1994. The importance of Bryophytes in the classification of human-disturbed high arctic vegetation. J. Veg. Sci. 5: 877–884.CrossRefGoogle Scholar
  13. Gerdol R. & Bragazza L. 2001. Syntaxonomy and community ecology of mires in the Rhaetian Alps (Italy). Phytocoenologia 31: 271–300.Google Scholar
  14. Grabherr G., Gottfried M. & Pauli H. 1994. Climate effects on mountain plants. Nature 369/6480: 448–448.CrossRefGoogle Scholar
  15. Háberová I. & Šoltésová A. 1989a. Alpínska vegetácia Batizovskej doliny vo Vysokych Tatrách (Juncetea trifidi). Biológia, Bratislava, 44: 441–449.Google Scholar
  16. Háberová I. & Šoltésová A. 1989b. Alpínska vegetácia Batizovskej doliny vo Vysokých Tatrách (Montio-Cardaminetea, Mulgedio-Aconitetea, Salicetea herbaceae). Biológia, Bratislava, 44: 51–60.Google Scholar
  17. Háberová I. 1989. Prehľad alpínskej vegetácie krištalinika Nízkych Tatier. Stredné Slovensko. Osveta, Martin, 8: 69–82.Google Scholar
  18. Hadač E. 1956. Rostlinná spoločenstva Temnosmrečinové doliny ve Vysokých Tatrách. Biologické práce, Veda SAV, Bratislava, 88 pp.Google Scholar
  19. Hájek M. Horsák M. Hájková P. & Dítě D. 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant Ecol. 8: 97–114CrossRefGoogle Scholar
  20. Hájková P. 2005. Bryophytes, pp. 151–174. In: Pouličková A., Hájek M. & Rybníček K. (eds), Ecology and Palaeoecology of spring fens of the West Carpathians, Palacký University, Olomouc.Google Scholar
  21. Hájková P., Hájek M. & Apostolová I. 2006. Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role. Plant Ecology 184: 111–130.CrossRefGoogle Scholar
  22. Hennekens S.M. & Schaminée J.H.J. 2001. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12: 589–591.CrossRefGoogle Scholar
  23. Hill M.O. 1979. TWINSPAN: A FORTRAM Program for Arranging Multivariate Data in an Ordered Two-way Table by Classification of the Individuals and Attributes. Cornell University, Ithaca, NY.Google Scholar
  24. Hrouda L., Kochjarová J. & Marhold K. 1990. Floristické pomery masívu Kráľovej hole (Nizke Tatry). Preslia, Praha, 62: 139–162.Google Scholar
  25. Jeník J. 1961. Alpinská vegetace Krkonoš, Králického Sněžníku a Hrubého Jeseníku: Teorie anemoorografických systémů. Academia, Praha, 407 pp.Google Scholar
  26. Jeslík R. 1971. Nové botanické nálezy v Nízkých Tatrách. Preslia, Praha, 43: 370–374.Google Scholar
  27. Kade A., Walker D.A. & Raynolds M.K. 2005. Plant communities and soils in cryoturbated tundra along a bioclimate gradient in the Low Arctic, Alaska. Phytocoenologia 60: 761–820CrossRefGoogle Scholar
  28. Kliment J., Jarolímek I., Šibík J. & Valachovič M. 2004. On the syntaxonomy and nomenclature of the Calamagrostietalia villosae and Adenostyletalia communities in Slovakia. Thaiszia: Journal of Botany 14: 93–157.Google Scholar
  29. Kliment J., Valachovič M., Bernátová D., Dúbravcová Z., Jarolímek I., Petrík A., Šibík J. & Uhlířová J. 2007. Rastlinné spoločenstvá Slovenska 4. Vysokohorská vegetácia. Veda, Bratislava, 388 pp.Google Scholar
  30. Kneblová V. 1957. Paleobotanický rozbor sedimentu z jeskyně Dudlavá a jeskyně Pod Strateníkem na úpatí Nízkych Tater. Biológia, Bratislava, 12: 561–576.Google Scholar
  31. Knollová I. & Chytrý M. 2004. Oak-hornbeam forests of the Czech Republic: geographical and ecological approaches to vegetation classification. Preslia, Praha 76: 291–311.Google Scholar
  32. Körner C. 1995. Alpine plant diversity: A global survey and functional interpretation, pp. 45–62. In: Chapin F.S. & Körner Ch. (eds), Arctic and Alpine Biodiversity. Ecological Studies 113. Springer Verlag, Berlin.Google Scholar
  33. Körner C. 2004. Mountain biodiversity, its causes and function. Ambio, Special Report 3: 11–17Google Scholar
  34. Krajina V. 1933. Die Pflanzengesellschaften des Mlynica-Tales in den Vysoké Tatry (Hohe Tatra). I. Teil. Beihefte zum Botanischen Centralblatt 50/2: 774–957.Google Scholar
  35. Lepš J., Prach K. & Slavíková J. 1985. Vegetation analysis along the elevation gradient in the Nizké Tatry Mountains (Central Slovakia). Preslia, Praha, 57: 299–312.Google Scholar
  36. Lindgren A., Klint J. & Moen J. 2007. Defense mechanisms against grazing: a study of trypsin inhibitor responses to simulated grazing in the sedge Carex bigelowii. Oikos 116/9: 1540–1546CrossRefGoogle Scholar
  37. Lukniš M. 1972. Reliéf, pp. 124–203. In: Lukniš, M. (ed.), Slovensko 2. Priroda, Obzor, Bratislava.Google Scholar
  38. Lupin M., Faško P., Melo M., Šťastný P. & Tomlain J. 2002. Klimatické oblasti (1:1 000 000), p. 95. In Miklós L. (ed.), Atlas krajiny Slovenskej republiky. Ministerstvo životného prostredia SR, Bratislava & Slovenská agentúra životneho prostrédia, Banská Bystrica.Google Scholar
  39. Marhold, K. & Hindák, F. (eds) 1998. Checklist of non-vascular and vascular plants of Slovakia. Veda, Bratislava, 687 pp..Google Scholar
  40. Mc Cune B. & Mefford M.J. 1999. PC-ORD. Multivariate analysis of ecological data. Version 4. MjM Software Design, Gleneden Beach, OR.Google Scholar
  41. Miadok D. 1995. Vegetácia ŠPR Ďumbier. Univerzita Komenskeho, Bratislava, 70 pp.Google Scholar
  42. Mucina L., Rodwell J.S., Schaminée J.H.J. & Dierschke H. 1993. European Vegetation Survey: current state of some national programmes. J. Veg. Sci. 4: 429–439.CrossRefGoogle Scholar
  43. Odland A. 2005. Oligotrophic and mesotrophic vegetation in southern Scandinavian mountains. Gradients in species and community distribution extracted by numerical analyses of earlier published vegetation descriptions. Phytocoenologia 35: 985–1018CrossRefGoogle Scholar
  44. Olofsson J. 2004. Positive and negative plant-plant interactions in two contrasting arctic-alpine plant communities. Arct. Antarc. Alp. Res. 36: 464–467.CrossRefGoogle Scholar
  45. Ondrejová I. 1991. Príspevok k poznaniu rozšírenia druhov Crepis alpestris (Jacq.) Tausch a Crepis jacquinii Tausch na Slovensku. Stredné Slovensko, Prirodne Vedy 10: 247–256.Google Scholar
  46. Plesník P. 1978. Man’s influence on timberline in the West Carpathian Mountains, Czechoslovakia. Arct. Alp. Res. 10: 491–504.CrossRefGoogle Scholar
  47. Rixen C., Stoeckli V. & Ammann W. 2003. Does artificial snow production affect soil and vegetation of ski pistes? A review. Perspect. Plant Ecol. 5: 219–230.CrossRefGoogle Scholar
  48. Schaffers A.P. & Sýkora K.V. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. 11: 225–244.CrossRefGoogle Scholar
  49. Schaminée J.H.J., Hommel P.W.F.M., Stortelder A.H.F., Weeda E.J. & Westhoff V. 1998. De vegetatie van Nederland. Deel 4. Opulus Press, Upsala, 346 pp.Google Scholar
  50. Sillinger P. 1933. Monografická studie o vegetaci Nízkych Tater. Slovansky ustav, Praha, 330 pp.Google Scholar
  51. StatSoft Inc. 2001. STATISTICA (data analysis software system), version 6. www.statsoft.com.
  52. Steiner G.M. 1992.: Österreichischer Moorschutzkatalog. Grüne Reihe des Bundesministeriums für Umwelt, Jugend und Familie, Wien 509 pp.Google Scholar
  53. Šály R. & Šurina B. 2002. Pôdy, pp. 105–111. Atlas krajiny Slovenskej republiky. 1. vydanie, Ministerstvo životného prostredia Bratislava, Slovenská agentúra životného prostredia SR, Banská Bystrica.Google Scholar
  54. Šeffer J. & Šefferová E. 1989. Spoločenstvá s Adenostyles alliariae vo Vysokých Tatrách — numerické približenie. Biológia, Bratislava, 44: 43–50.Google Scholar
  55. Šibík J., Valachovič M. & Kliment J. 2005. Plant communities with Pinus mugo (alliance Pinion mugo) in the subalpine belt of theWestern Carpathians — a numerical approach. Acta Societatis Botanicorum Poloniae, Wrocłlaw, 74/4: 329–343.Google Scholar
  56. Šibík J., Kliment J., Jarolímek I., Dúbravcová Z., Bělohlávková R. & Paclová L. 2006. Syntaxonomy and nomenclature of th alpine heaths (the class Loiseleurio-Vaccinietea) in the Western Carpathians. Hacquetia 5: 37–71.Google Scholar
  57. Šibík J. 2007. Roso pendulinae-Pinetea mugo Theurillat in Theurillat et al. 1995. In: Rastlinné spoločenstvá Slovenska. 6. Lesná a krovinová vegetácia. Veda, Bratislava, in prep.Google Scholar
  58. Šrůtek M. & Doležal J. 2003. Functional interdependence between climatic factors, topographic processes and spatial patterns of species richness in mountain areas: a special case or the general pattern? Biologia 58: 823–832Google Scholar
  59. ter Braak C.J.F. & Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen & České Budějovice.Google Scholar
  60. Tichý L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13: 451–453.CrossRefGoogle Scholar
  61. Tichý L. & Chytrý M. 2006. Statistical determination of diagnostic species for site groups of unequal size. J. Veg. Sci. 17: 809–818.Google Scholar
  62. Treskoňová M. 1972. Hole strednej a západnej časti Nízkych Tatier. Dipl. práca, Msc. Depon. in Prír. F. UK, Bratislava.Google Scholar
  63. Turis P. & Valachovič M. 1996. Lomikameň jastrabníkolistý (Saxifraga hieraciifolia W. Et K.) v Kraľovohoľskej časti Nízkych Tatier. Bull. Slov. Bot. Spoločn., Bratislava, 18: 138–140.Google Scholar
  64. Turis P., Barančok P. & Sekulová L. 2006. Významnejšie nálezy a zaujímavejšie výskyty cievnatých rastlín v masíve Kraľovej hole v Nízkych Tatrách. Bull. Slov. Bot. Spoločn., Bratislava, 28: 121–126.Google Scholar
  65. Valachovič M. 1996. The role of cryptogams in differentiation of plant communities on the shady rocks in Western Carpathians. Thaiszia: Journal of botany 5: 131–152.Google Scholar
  66. Valachovič M. (ed.) 2001 Rastlinné spoločenstvá Slovenska 3. Vegetácia mokradí. Veda, Bratislava, 434 pp.Google Scholar
  67. van der Maarel E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–114.CrossRefGoogle Scholar
  68. Vartíková E. 1975. Floristické pomery severovýchodnej časti Nízkych Tatier, oblasti Čierneho Váhu. Dipl. práca, Msc. Depon. in Prír. F. UK, Bratislava.Google Scholar
  69. Vonlanthen C.M., Buhler A., Veit H., Kammer P.M. & Eugster W. 2006. Alpine plant communities: A statistical assessment of their relation to microclimatological, pedological, geomorphological, and other factors. Physical Geography 27: 137–154CrossRefGoogle Scholar
  70. Walker D.A., Raynolds M.K., Daniëls F.J., Einarsson E. & Elvebakk A. 2005. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16: 267–282.CrossRefGoogle Scholar
  71. Wamelink G.W.W., Joosten V., van Dobben H.F. & Berendse F. 2002. Validity of Ellenberg indicator values judged from physico-chemical field measurements. J. Veg. Sci. 13: 269–278.CrossRefGoogle Scholar
  72. Wipf S., Rixen C., Fischer M., Schmid B. & Stoeckli V. 2005. Effects of ski piste preparation on alpine vegetation. J. Appl. Ecol. 42: 306–316.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations