Biologia

, Volume 64, Issue 1, pp 139–142 | Cite as

Aggression, cooperation, and relatedness among colonies of the invasive ant, Monomorium pharaonis, originating from different areas of the world

  • Jan Frouz
  • Radek John
  • Václav Rupeš
  • Gábor Cech
  • Károly Marialigeti
Article

Abstract

The cooperation and aggression between five laboratory colonies of Monomorium pharaonis were compared using an aggressiveness test and pupa-carrying test in laboratory arenas. The colonies were derived from field collections in different parts of Europe and USA. Generally, inter-colony aggressiveness was low and acceptance of pupae from other colonies was high. Workers from one colony (Lužiny, CZ), however, frequently displayed aggressive behavior when paired with workers from other colonies, and the Lužiny pupae were avoided by workers of other colonies in pupa-carrying tests. Behavioral tests were only partly consistent with the phylogenetic relatedness of ants because the Wisconsin colony (USA) grouped with the Lužiny colony (and not with the other three colonies) in the phylogenetic analysis but grouped with the other three colonies in the behavioral tests.

Key words

Monomorium pharaonis kin selection supercolony genetic bottleneck aggression, invasive species, ant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beatson H. 1972. Pharaoh ants as pathogen vector in hospitals. The Lancet 19: 425–427.CrossRefGoogle Scholar
  2. Czechowski W., Radchenko A. & Czechowska W. 2002. The Ants (Hymenoptera, Formicidae) of Poland. Muzeum and Institute of Zoology PAS, Warszawa, 200 pp.Google Scholar
  3. Giraud T., Pedersen J.S. & Keller L. 2002. Evolution of super-colonies: The Argentine ants of southern Europe. Proc. Nat. Acad. Sci. USA 99: 6075–6079.PubMedCrossRefGoogle Scholar
  4. Hall T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid 41: 95–98.Google Scholar
  5. Heinze J., Trindl A., Seifert B. & Yamauchi K. 2005. Evolution of male morphology in the ant genus Cardiocondyla. Mol. Phylogenet. Evol. 37: 278–288.PubMedCrossRefGoogle Scholar
  6. Hölldober B. & Wilson E.O. 1990. The Ants. Harvard University Press, Cambridge, Massachusetts, 732 pp.Google Scholar
  7. Holway D.A., Suarez A.V. & Case T.J. 1998. Loss of intraspecific aggression in the success of widespread invasive social insect. Science 282: 949–952. DOI 10.1126/science.282.5390.949PubMedCrossRefGoogle Scholar
  8. Kumar S., Tamura K. & Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163. DOI 10.1093/bib.5.2.150PubMedCrossRefGoogle Scholar
  9. Lauterer 1971. Poznámky k bionomii a metodice hubení mravence faraonského (Monomorium pharaonis). Československá 16: 86–91.Google Scholar
  10. Maeder A., Freitag A. & Cherix D. 2005. Species and nestmate brod discrimination in the sibling wood ant species Formica paralugubris and Formica lugubris. Ann. Zool. Fenn. 42: 201–212.Google Scholar
  11. Paecock A.D. & Baxter A.T. 1949. Studies in Pharaoh ants I. The rearing of artificial colonies. Entomol. Mon. Mag. 86: 171–427.Google Scholar
  12. Rosengren R., Chautems D., Cherix D., Fortelius W. & Keller L. 1994. Separation of two sympatric sibling species of Formica L. ants by a behavioural choice test based on brood discrimination. Memorabilia Zoologica 48: 237–249.Google Scholar
  13. Rupeš V., Hrdý I., Pitnerová J., Žďárek J. & Křeček J. 1978. The influence of methopren on pharaoh ant, Monomorium pharaonis colonies. Acta Entomol. Bohemoslov. 75: 155–163.Google Scholar
  14. Simon C., Frati F., Beckenback A., Crespi B., Liu H. & Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann. Entomol. Soc. Amer. 87: 651–701.Google Scholar
  15. Starks P.T.T. 2003. Selection for uniformity: xenophobia and invasion success. Trends Ecol. Evol. 18: 159–162.CrossRefGoogle Scholar
  16. Tamura K. & Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA of humans and chimpanzees. Mol. Biol. Evol. 10: 512–526.PubMedGoogle Scholar
  17. Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680. DOI 10.1093/nar/22.22.4673PubMedCrossRefGoogle Scholar
  18. Tsutsui N.D., Suarez A.V. & Grosberg R.K. 2003. Genetic diversity, asymetrical aggression, and recognition in a widespread invasive species. Proc. Nat. Acad. Sci. USA 100: 1095–1100.CrossRefGoogle Scholar
  19. Tsutsui N.D., Suarez A.V., Holway D.A. & Case T.J. 2000. Reduced genetic variation and the success of an invasive species. Proc. Nat. Acad. Sci. USA 97: 5948–5953.PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jan Frouz
    • 1
    • 5
    • 6
  • Radek John
    • 2
  • Václav Rupeš
    • 3
  • Gábor Cech
    • 4
  • Károly Marialigeti
    • 4
  1. 1.Institute of Soil BiologyBiology Centre AS CRPragueCzech Republic
  2. 2.Department of EcologyCharles UniversityPragueCzech Republic
  3. 3.Institute for Public HealthPragueCzech Republic
  4. 4.Department of MicrobiologyEötvös Loránd UniversityBudapestHungary
  5. 5.Department of EcologySouth Bohemian UniversityPragueCzech Republic
  6. 6.Institute for Environmental StudiesCharles UniversityPragueCzech Republic

Personalised recommendations