Advertisement

Biologia

, 63:368 | Cite as

Mire vegetation of the Muránska Planina Mts — formalised classification, ecology, main environmental gradient and influence of geographical position

  • Richard HrivnákEmail author
  • Michal Hájek
  • Drahoš Blanár
  • Judita Kochjarová
  • Petra Hájková
Full Paper

Abstract

Mire vegetation of the Muránska planina Mts and adjacent parts of neighbouring orographical units was studied in 1998–2005 using the standard Zürich-Montpellier (Braun-Blanquet) approach. We applied the defined phytosociological species groups and national formal definitions of mire associations in data processing. Within the classes Scheuchzerio-Caricetea fuscae and Oxycocco-Sphagnetea, seven associations (Caricetum davallianae, Carici flavae-Cratoneuretum filicini, Valeriano simplicifoliae-Caricetum flavae, Caricetum goodenowii, Carici echinatae-Sphagnetum, Carici rostratae-Sphagnetum and Pino mugo-Sphagnetum) were classified using formal classification criteria. Two other communities (Sphagno warnstorfii-Caricetum davallianae and Eriophoro vaginati-Sphagnetum recurvi) were not classified due to the lack of sufficient number of diagnostic species from species groups. The first DCA axis followed the mineral richness gradient. Vegetation plots were arranged from rich fens over moderately rich fens towards poor Sphagnum fens and raised bog. This fact was confirmed by a strong and significant correlation of the DCA site scores on the first axis with the measured pH and water conductivity as a surrogate of mineral richness. The second DCA axis correlated with mean Ellenberg’s indicator values for both temperature and soil nutrients. This pattern corresponds to that found in other regions of diversified Central-European landscape. We can therefore conclude that marginal geographical position and climatic specifity of the region under study did not alter gradient structure of the mire vegetation. When diversity of mire vegetation was compared to other regions in Slovakia by applying the same formal definitions to different regions, the study region was found to be conspicuously less diverse than the distribution centres of mire habitats in Slovakia (Orava and Vysoké Tatry regions), but more diverse than most of other marginal regions of mire distribution. Relatively high beta diversity of mires was probably caused by variable bedrock and local climate.

Key words

formal definition peatlands poor-rich gradient vegetation survey 

References

  1. Asada T. 2002. Vegetation gradients in relation to temporal fluctuation of environmental factors in Bekanbeushi peatland. Ecol. Res. 17: 505–518.CrossRefGoogle Scholar
  2. Barkman J.J., Doing H. & Segal S. 1964. Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Bot. Neerl. 13: 394–419.Google Scholar
  3. Baumann K. 1996. Kleinseggenriede und ihre Kontaktgesselschaften im westlichen Unterharz (Sachsen-Anhalt). Tuexenia 16: 151–177.Google Scholar
  4. Blanár D. & Šoltés R. 2000. The glacial relic moss species Helodium blandowii in the Veporské vrchy Hills (Slovakia). Thaiszia — J. Bot., Košice, 10: 47–51.Google Scholar
  5. Bragazza L. & Gerdol R. 1999. Ecological gradients on some Sphagnum mires in the southeastern Alps (Italy). Appl. Veg. Sci. 2: 55–60.CrossRefGoogle Scholar
  6. Bragazza L. & Gerdol R. 2002. Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominanted peatlands? J. Veg. Sci. 13: 473–482.CrossRefGoogle Scholar
  7. Bruelheide H. 2000. A new measure of fidelity and its application to defining species groups. J. Veg. Sci. 11: 167–178.CrossRefGoogle Scholar
  8. Bruelheide H. & Chytrý M. 2000. Towards unification of national vegetation classifications: A comparison of two methods for analysis of large data sets. J. Veg. Sci. 11: 295–306.CrossRefGoogle Scholar
  9. Chytrý M. & Otýpková Z. 2003. Plot sizes used for phytosociological sampling of European vegetation. J. Veg. Sci. 14: 563–570.CrossRefGoogle Scholar
  10. Chytrý M., Tichý L., Holt J. & Botta-Dukát Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13: 79–90.CrossRefGoogle Scholar
  11. Chytrý M. (ed.) 2007: Vegetace České republiky 1. Travinná a keříčková vegetace. Academia, Praha.Google Scholar
  12. Cvachová A. & Urbanová V. 1985. Vegetačné pomery vybraných lokalít Chránenej krajinnej oblasti Muránska planina. Stredné Slovensko, Banská Bystrica, 4: 43–81.Google Scholar
  13. Dítě D., Pukajová D., Hájek M. & Hájková P. 2006. Minerotrofné rašeliniská (Trieda Scheuchzerio-Caricetea fuscae) v tatranskej oblasti. Ochr. Prír., Banská Bystrica, 25: 17–30.Google Scholar
  14. Dítě D., Hájek M. & Hájková P. 2007. Formal definitions of Slovakian mire plant associations and their application in regional research. Biologia 62: 400–408.CrossRefGoogle Scholar
  15. Ellenberg H., Weber H.E., Düll R., Wirth W., Werner W. & Paulißen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa (2nd ed.). Scr. Geobot. 18: 1–258.Google Scholar
  16. Faško P. & Šťastný P. 2002. Mean Annual Precipitation Totals; Map No. 54. In: Miklóš L. (ed), Landscape Atlas of the Slovak Republic. 1st ed., Ministry of Environment Slovak Republic, Bratislava.Google Scholar
  17. Fraňo A. 1972. Mikrobiologische Charakteristik der Torfböden im Oberen Hrongebiet-Horehronie. Acta Fac. Rerum Nat. Univ. Comenianae, Bot., Bratislava, 20: 133–147.Google Scholar
  18. Gerdol R. 1995. Community and species-performance patterns along an alpine poor-rich mire gradient. J. Veg. Sci. 6: 175–182.CrossRefGoogle Scholar
  19. Gerdol R. & Bragazza L. 2001. Syntaxonomy and community ecology of mires in the Rhaetian Alps (Italy). Phytocoenol. 29: 271–299.Google Scholar
  20. Háberová I. 1968. Príspevok k poznaniu rozšírenia porastov s Carex davalliana na Horehroní. Biológia 23: 530–535.Google Scholar
  21. Háberová I. 1971. Rastlinné spoločenstvá rašelinných lúk Horehronia [PhD thesis]. PrF UK Bratislava.Google Scholar
  22. Háberová I. 1976a. Pflanzengeselschaften der Torfwiesen im Horehron-Gebiet. Acta Fac. Rerum Nat. Univ. Comenianae, Bot., Bratislava, 25: 67–126.Google Scholar
  23. Háberová I. 1976b. Gesellschaft mit Equisetum variegatum im Horehronie-Gebiet. Acta Fac. Rerum Nat. Univ. Comenianae, Bot., Bratislava, 24: 169–172.Google Scholar
  24. Háberová I. 1979. Caricetum diandrae Jonas 32 auf dem Gebiete der Slowakei. Acta Fac. Rerum Nat. Univ. Comenianae, Bot., Bratislava, 27: 39–52.Google Scholar
  25. Hájek M. & Háberová I. 2001. Scheuchzerio-Caricetea fuscae, pp. 185–273. In: Valachovič, M. (ed.), Rastlinné spoločenstvá Slovenska 3. Vegetácia mokradí. Veda, Bratislava.Google Scholar
  26. Hájek M. & Hájková P. 2002. Vegetation composition, main gradient and subatlantic elements in spring fens of the northwestern Carpathian borders. Thaiszia — J. Bot., Košice, 12: 1–24.Google Scholar
  27. Hájek M. & Hekera P. 2004. Can seasonal variation in fen water chemistry influence the reliability of vegetation-environmental analysis? Preslia, Praha, 76: 1–14.Google Scholar
  28. Hájek M., Hekera P. & Hájková P. 2002. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobot. 37: 205–224.CrossRefGoogle Scholar
  29. Hájek M., Tzonev R., Hájková P., Ganeva A. & Apostolova I. 2005. Plant communities of the subalpine mires and springs in the Vitosha Mt. Phytologia Balcanica, Sofia, 11(2): 193–205.Google Scholar
  30. Hájek M., Horsák M., Hájková P. & Dítě D. 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant Ecol. Evol. Syst. 8: 97–114.CrossRefGoogle Scholar
  31. Hájková, P. & Hájek, M. 2004a. Sphagnum-mediated successional pattern in the mixed mire in the Muránska planina Mts (Western Carpathians, Slovakia). Biologia 59: 65–74.Google Scholar
  32. Hájková P. & Hájek M. 2004b. Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobot. 39: 335–351.CrossRefGoogle Scholar
  33. Hájková P. & Hájek M. 2005. Diversity of Calthion wet meadows in the western part of flysch Carpathians: regional classification based on national formal definitions. Thaiszia — J. Bot., Košice, 15: 85–116.Google Scholar
  34. Hájková P., Wolf P. & Hájek M. 2004. Environmental factors and Carpathian spring vegetation: the importance of scale and temporal variation. Ann. Bot. Fennici 41: 249–262.Google Scholar
  35. Hájková P., Hájek M. & Apostolova I. 2006. Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role. Plant Ecol. 184: 111–130.CrossRefGoogle Scholar
  36. Hendrych R. 1969. Flora montium Muraniensium. Acta Univ. Carol., Biol., Praha, 1968: 95–223.Google Scholar
  37. Hennekens S.M. & Schaminée J.H.J. 2001. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12: 589–591.CrossRefGoogle Scholar
  38. Horsák M., Hájek M., Dítě D. & Tichý L. 2007. Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development? J. Molluscan Studies 73: 53–60.CrossRefGoogle Scholar
  39. Hrivnák R. & Blanár D. 2000. Rastlinné spoločenstvá rašelinísk národného parku Muránska planina, pp. 113–116. In: Stanová, V. (ed.), Rašeliniská Slovenska. DAPHNE — Inštitút aplikovanej ekológie, Bratislava.Google Scholar
  40. Hrivnák R., Kliment J., Kochjarová J., Bernátová D., Blanár D., Hájek M., Hájková P., Jarolímek I., Uhliarová E., Ujházy K., Valachovič M. & Zaliberová, M. 2004. Prehľad rastlinných spoločenstiev uvádzaných z Muránskej planiny a bezprostredne susediacich území. Reussia, Revúca, 1(Suppl. 1): 191–214.Google Scholar
  41. Jankovská V. 1988. A reconstruction of the Late-Glacial and Early-Holocene evolution of forest vegetation in the Poprad basin, Czechoslovakia. Folia Geobot. 23: 303–319.Google Scholar
  42. Kočí M., Chytrý M. & Tichý L. 2003. Formalized reproduction of an expert-based phytosociological classification: A case study of subalpine tall-forb vegetation. J. Veg. Sci. 14: 601–610.CrossRefGoogle Scholar
  43. Kochjarová J., Blanár D. & Hrivnák R. 2002. Zaujímavé nálezy cievnatých rastlín z Muránskej planiny a susediacich častí Slovenského rudohoria a Nízkych Tatier. Bull. Slov. Bot. Spoločn., Bratislava, 24: 117–126.Google Scholar
  44. Kochjarová J., Turis P., Blanár D., Hrivnák R., Kliment J. & Vlčko J. 2004. Cievnaté rastliny Muránskej planiny. Reussia, Revúca, 1(Suppl. 1): 91–190.Google Scholar
  45. Kochjarová J., Zaliberová M., Jarolímek I., Blanár D. & Hrivnák R. 2005. Nové floristické a fytocenologické nálezy z Muránskej planiny a blízkeho okolia. Bull. Slov. Bot. Spoločn., Bratislava, 27: 109–120.Google Scholar
  46. Kuželová I. & Chytrý M. 2004. Interspecific associations in phystosociological data sets: how do they change between local and regional scale? Plant Ecol. 173: 247–257.CrossRefGoogle Scholar
  47. Lapin M., Faško P., Melo M., Štastný P. & Tomlain J. 2002. Climatic districts. Map No. 27. In: Miklóš, L. (ed.), Landscape Atlas of the Slovak Republic. 1st ed. Ministry of Environment Slovak Republic, Bratislava.Google Scholar
  48. Marhold K. & Hindák F. (eds.) 1998. Zoznam nižších a vyšších rastlín Slovenska. Veda, Bratislava.Google Scholar
  49. Miadok D. 1976. Ist das Knieholz (Pinus mugo ssp. mughus (Scop.) Zenari) im Hrdzavá-Tal natürlichen Ursprungs? Acta Fac. Rerum Nat. Univ. Comenianae, Bot., Bratislava, 25: 127–131.Google Scholar
  50. Navrátilová J. & Navrátil J. 2005. Vegetation gradients in fishpond mires in relation to seasonal fluctuations in environmental factors. Preslia 77: 405–418.Google Scholar
  51. Navrátilová J., Navrátil J. & Hájek M. 2006. Relationships between environmental factors and vegetation in nutrient-enriched fens at fishpond nargins. Folia Geobot. 41: 353–376.CrossRefGoogle Scholar
  52. Noble I.R. 1987. The role of expert systems in vegetation science. Vegetatio 69: 115–121.CrossRefGoogle Scholar
  53. Pillerová A. 1969. Primula farinosa L. na Horehroní. Diploma thesis, PrF UK, Bratislava.Google Scholar
  54. Schaffers A.P. & Sykora K.V. 2002. Synecology of species-rich plant communities on roadside verges in the Netherlands. Phytocoenol. 32: 29–83.CrossRefGoogle Scholar
  55. Sillinger P. 1938. Muránska vysočina, ráj karpatské přírody. Krása našeho domova, Praha, 30: 72–76.Google Scholar
  56. Sjörs H. 1952. On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2: 241–258.CrossRefGoogle Scholar
  57. StatSoft 2001. STATISTICA. System reference. StatSoft Inc., Tulsa.Google Scholar
  58. Suza J. 1950. Lišejníky Muráňské vysočiny a Slovenského krasu. Práce Morav.-Slez. Akad. Věd Přír., Brno, 22: 183–210.Google Scholar
  59. Šoltés R. 2000: Glaciálny relikt mach Helodium blandowii na Slovensku. Ochr. Prír., Banská Bystrica, 18: 41–49.Google Scholar
  60. Šoltés R., Hájek M. & Valachovič M. 2001: Oxycocco-Sphagnetea, pp. 275–296. In: Valachovič, M. (ed.), Rastlinné spoločenstvá Slovenska 3. Vegetácia mokradí. Veda, Bratislava.Google Scholar
  61. Šoltés R., Janovicová-Mišíková K., Kučera P., Kochjarová J., Blanár D. & Hrivnák R. 2004. Machorasty Muránskej planiny a pril’ahlých orografických celkov (predbežný zoznam taxónov). Reussia, Revúca, 1(Suppl. 1): 69–89.Google Scholar
  62. Tahvanainen T. 2004. Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of the North-Eastern Fennoscandian shield. Folia Geobot. 39: 353–369.CrossRefGoogle Scholar
  63. Tahvanainen T., Sallantaus T. & Heikkilä R. 2003. Seasonal variation of water chemical gradients in three boreal fens. Ann. Bot. Fennici 40: 345–355.Google Scholar
  64. ter Braak C.J.F. & Šmilauer P. 2002. CANOCO Reference manual and CanoDraw for Windows User’s guide. Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar
  65. Tichý L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13: 451–453.CrossRefGoogle Scholar
  66. Tichý L. 2005. New similarity indices for the assignment of relevés to the vegetation units of an existing phytosociological classification. Plant Ecol. 179: 67–72.CrossRefGoogle Scholar
  67. Turčanová-Cvachová A. 1972. Význačná lokalita rosičky okrúhlolistej (Drosera rotundifolia) na Tŕstí a jej ochrana. Českoslov. Ochr. Prír., Bratislava, 13: 119–123.Google Scholar
  68. Turis P. 1994. Významná genofondová plocha vlhkomilných rastlín pri Hel’pe v CHKO Muránska planina. Bull. Slov. Bot. Spoločn., Bratislava, 16: 102–104.Google Scholar
  69. Vitt D.H., Bayley S.E. & Jin T.L. 1995. Seasonal variation in water chemistry over a bog-rich fen gradient in Continental Western Canada. Can. J. Fish. Aquat. Sci. 52: 587–606.CrossRefGoogle Scholar
  70. Waughmann G.J. 1980. Chemical aspects of ecology of some south German peatlands. J. Ecol. 68: 1025–1046.CrossRefGoogle Scholar
  71. Wheeler B.D. & Proctor M.C.F. 2000. Ecological gradients, subdivisions and terminology of north-west European mires. J. Ecol. 88: 187–203.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  • Richard Hrivnák
    • 1
    Email author
  • Michal Hájek
    • 2
    • 3
  • Drahoš Blanár
    • 4
  • Judita Kochjarová
    • 5
  • Petra Hájková
    • 2
    • 3
  1. 1.Institute of BotanySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Ecology, Institute of BotanyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  4. 4.State Nature ConservancyNational Park Muránska planina MtsRevúcaSlovakia
  5. 5.Botanical GardenComenius UniversityBlatnica č. 315Slovakia

Personalised recommendations