Advertisement

Biologia

, Volume 63, Issue 2, pp 139–150 | Cite as

Endocrine regulation of the reproduction in crustaceans: Identification of potential targets for toxicants and environmental contaminants

  • Edita Mazurová
  • Klára Hilscherová
  • Rita Triebskorn
  • Heinz-R. Köhler
  • Blahoslav Maršálek
  • Luděk Bláha
Review

Abstract

Progress in ecotoxicological research documents that crustaceans are highly vulnerable to diverse chemicals and toxicants in the environment. In particular, pollutants affecting endocrine homeostasis in crustaceans (i.e., endocrine disruptors) are intensively studied, and serious reproductive disorders have been documented. In this review, current knowledge about the endocrine regulation of the crustacean reproduction is put together with the published ecotoxicological data with an attempt to summarize the potential of xenobiotics to affect crustacean reproduction. Following gaps and trends were identified: (1) Studies are required in the field of neurohormone (serotonin and dopamine) regulation of the reproduction and possible modulations by environmental toxicants such as antidepressant drugs. (2) Molting-related parameters (regulated by ecdysteroid hormones) are closely coordinated with the development and reproduction cycles in crustaceans (cross-links with methyl farnesoate signalling), and their susceptibility to toxicants should be studied. (3) Other biochemical targets for xenobiotics were recently discovered in crustaceans and these should be explored by further ecotoxicological studies (e.g., new information about ecdysteroid receptor molecular biology). (4) Some sex steroid hormones known from vertebrates (testosterone, progesterone) have been reported in crustaceans but knowledge about their targets (crustacean steroid receptors) and signalling is still limited. (5) Determination of the sex in developing juveniles (affecting the sex ratio in population) is a sensitive parameter to various xenobiotics (including endocrine disruptors) but its modulation by general environmental stress and non-specific toxicity should be further studied.

Key words

crustaceans reproduction endocrine disruption sex determination contaminant ecotoxicology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdu U., Davis C., Khalaila I. & Sagi A. 2002. The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. Gen. Comp. Endocrinol. 127: 263–272.PubMedCrossRefGoogle Scholar
  2. Abdu U., Takac P., Laufer H. & Sagi A. 1998. Effect of methyl farnesoate on late larval development and metamorphosis in the prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae): A juvenoid-like effect? Biol. Bull. 195: 112–119.CrossRefGoogle Scholar
  3. Allner B., Wegener G., Knacker T. & Stahlschmidt-Allner P. 1999. Electrophoretic determination of estrogen-induced protein in fish exposed to synthetic and naturally occurring chemicals. Sci. Total Environ. 233: 21–31.PubMedCrossRefGoogle Scholar
  4. Andersen H.R., Halling-Sorensen B. & Kusk K.O. 1999. A parameter for detecting estrogenic exposure in the copepod Acartia tonsa. Ecotoxicol. Environ. Saf. 44: 56–61.PubMedCrossRefGoogle Scholar
  5. Andersen H.R., Wollenberger L., Halling-Sorensen B. & Kusk K.O. 2001. Development of copepod nauplii to copepodites — A parameter for chronic toxicity including endocrine disruption. Environ. Toxicol. Chem. 20: 2821–2829.PubMedCrossRefGoogle Scholar
  6. Baldwin W.S., Milam D.L. & LeBlanc G.A. 1995. Physiological and biochemical perturbations in Daphnia magna following exposure to the model environmental estrogen diethylstilbestrol. Environ. Toxicol. Chem. 14: 945–952.CrossRefGoogle Scholar
  7. Billinghurst Z., Clare A.S. & Depledge M.H. 2001. Effects of 4-n-nonylphenol and 17 beta-oestradiol on early development of the barnacle Elminius modestus. J. Exp. Mar. Biol. Ecol. 257: 255–268.PubMedCrossRefGoogle Scholar
  8. Billinghurst Z., Clare A.S., Matsumura K. & Depledge M.H. 2000. Induction of cypris major protein in barnacle larvae by exposure to 4-n-nonylphenol and 17 beta-oestradiol. Aquat. Toxicol. 47: 203–212.CrossRefGoogle Scholar
  9. Breitholtz M. & Bengtsson B.E. 2001. Oestrogens have no hormonal effect on the development and reproduction of the harpacticoid copepod Nitocra spinipes. Mar. Pollut. Bull. 42: 879–886.PubMedCrossRefGoogle Scholar
  10. Brian J.V. 2005. Inter-population variability in the reproductive morphology of the shore crab (Carcinus maenas): evidence of endocrine disruption in a marine crustacean? Mar. Pollut. Bull. 50: 410–416.PubMedCrossRefGoogle Scholar
  11. Brooks B.W., Turner P.K., Stanley J.K., Weston J.J., Glidewell E.A., Foran C.M., Slattery M., La Point T.W. & Huggett D.B. 2003. Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52: 135–142.PubMedCrossRefGoogle Scholar
  12. Brown R.J., Conradi M. & Depledge M.H. 1999. Long-term exposure to 4-nonylphenol affects sexual differentiation and growth of the amphipod Corophium volutator (Pallas, 1766). Sci. Total Environ. 233: 77–88.CrossRefGoogle Scholar
  13. Brown R.J., Rundle S.D., Hutchinson T.H., Williams T.D. & Jones M.B. 2003. A copepod life-cycle test and growth model for interpreting the effects of lindane. Aquat. Toxicol. 63: 1–11.PubMedCrossRefGoogle Scholar
  14. Chang E.S. 1993. Comparative endocrinology of molting and reproduction: insects and crustaceans. Annu. Rev. Entomol. 38: 161–80.PubMedCrossRefGoogle Scholar
  15. Charniaux-Cotton H. 1960. Sex determination, pp. 411–447. In: Waterman T.H. (ed.), The Physiology of Crustacea, Academic Press, New York.Google Scholar
  16. Charniaux-Cotton H. & Payen G. 1988. Crustacean reproduction, pp. 279–303. In: Laufer H. & Downer R.G.H. (eds), Endocrinology of Selected Invertebrate Types, Alan R. Liss, New York, USA.Google Scholar
  17. Chaves A.R. 2000. Effect of X-organ sinus gland extract on S35 methionine incorporation to the ovary of the red swamp crawfish Procambarus clarkii. Comp. Biochem. Physiol. A 126: 407–413.CrossRefGoogle Scholar
  18. Chung J.S. & Webster S.G. 2003. Moult cycle-related changes in biological activity of moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenas — From target to transcript. Eur. J. Biochem. 270: 3280–3288.PubMedCrossRefGoogle Scholar
  19. Colbourne J.K., Singan V.R. & Gilbert D.G. 2005. WFleaBase: the Daphnia genome database. BMC Bioinformatics 6: 45–49.PubMedCrossRefGoogle Scholar
  20. Cooke I.M. & Sullivan R.E. 1982. Hormones and neurosecretion, pp. 205–287. In: Atwood H.L. & Sanderman D.C. (eds), The Biology of Crustacea — Neurobiology: Structure and Function, Academic Press, New York, London, Paris, San Diego, San Francisco, Sao Paolo, Sydney, Tokyo, Toronto.Google Scholar
  21. Cripe G.M., McKenney C.L., Hoglund M.D. & Harris P.S. 2003. Effects of fenoxycarb exposure on complete larval development of the xanthid crab, Rhithropanopeus harrisii. Environ. Pollut. 125: 295–299.PubMedCrossRefGoogle Scholar
  22. Dinan L., Bourne P., Whiting P., Dhadialla T.S. & Hutchinson T.H. 2001. Screening of environmental contaminants for ecdysteroid agonist and antagonist activity using the Drosophila melanogaster BII cel in vitro assay. Environ. Toxicol. Chem. 20: 2038–2046.PubMedCrossRefGoogle Scholar
  23. Dubrovsky E.B., Dubrovskaya V.A. & Berger E.M. 2004. Hormonal regulation and functional role of Drosophila E75A orphan nuclear receptor in the juvenile hormone signaling pathway. Dev. Biol. 268: 258–270.PubMedCrossRefGoogle Scholar
  24. Dunn A.M., Hogg J.C., Kelly A. & Hatcher M.J. 2005. Two cues for sex determination in Gammarus duebeni: Adaptive variation in environmental sex determination? Limnol. Oceanogr. 50: 346–353.CrossRefGoogle Scholar
  25. Durica D.S., Wu X., Anilkumar G., Hopkins P.M. & Chung A.C.K. 2002. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Mol. Cell. Endocrinol. 189: 59–76.PubMedCrossRefGoogle Scholar
  26. Eads B.D., Andrews J. & Colbourne J.K. 2007. Ecological genomics in Daphnia: stress responses and environmental sex determination. Heredity. doi: 10.1038/sj.hdy.6800999.Google Scholar
  27. Fingerman M. 1997. Roles of neurotransmitters in regulating reproductive hormone release and gonadal maturation inh decapod crustaceans. Invertebr. Reprod. Dev. 31: 47–54.Google Scholar
  28. Flaherty C.M. & Dodson S.I. 2005. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61: 200–207.PubMedCrossRefGoogle Scholar
  29. Ford A.T., Read P.A., Jones T.L., Michino F., Pang Y. & Fernandes T.F. 2007. An investigation into intersex amphipods and possible association with aquaculture. Mar. Environ. Res. 64: 443–455.PubMedCrossRefGoogle Scholar
  30. Ford A.T., Rodgers-Gray T.P., Davies I.M., Dunn A.M., Read P.A., Robinson C.D., Smith J.E. & Fernandes T.F. 2005. Abnormal gonadal morphology in intersex, Echinogammarus marinus (Amphipoda): a possible cause of reduced fecundity? Mar. Biol. 147: 913–918.CrossRefGoogle Scholar
  31. Gagne F. & Blaise C. 2000. Organic alkali-labile phosphates in biological materials: A generic assay to detect vitellogenin in biological tissues. Environ. Toxicol. 15: 243–247.CrossRefGoogle Scholar
  32. Ghekiere A., Fenske M., Verslycke T., Tyler C. & Janssen C.R. 2005. Development of quantitative enzyme-linked immunosorbent assay for vitellin in the mysid Neomysis integer (Crustacea: Mysidacea). Comp. Biochem. Physiol. A 142: 43–49.CrossRefGoogle Scholar
  33. Ginsburger-Vogel T. 1989. Determinism of paternally inherited sex ratio anomalies in the amphipod crustacean Orchestia gammarellus Pallas. Invertebr. Reprod. Dev. 16: 183–194.Google Scholar
  34. Ginsburger-Vogel T. 1991. Intersexuality in Orchestia mediterranea Costa, 1853, and Orchestia aestuarensis Wildish, 1987 (Amphipoda): A consequence of hybridization or parasitic infestation? J. Crustac. Biol. 11: 530–539.CrossRefGoogle Scholar
  35. Ginsburger-Vogel T. & Charniaux-Cotton H. 1982. Sex determination, pp. 257–281. In: Abele L.G. (ed.), The Biology of Crustacea — Embryology, Morphology and Genetics, Academic Press, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Sydney, Tokyo, Toronto.Google Scholar
  36. Hasegawa Y., Hirose E. & Katakura Y. 1993. Hormonal control of sexual differentiation and reproduction in crustacea. Am. Zool. 33: 403–411.Google Scholar
  37. Hedgecock D., Tracey M.L. & Nelson K. 1982. Genetics, pp. 283–290. In: Abele L.G. (ed.), The Biology of Crustacea — Embryology, Morphology and Genetics, Academic Press, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Syndey, Tokyo, Toronto.Google Scholar
  38. Henry T.B., Kwon J.-W., Armbrust K.L. & Black M.C. 2004. Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubia. Environ. Toxicol. Chem. 23: 2229–2233.PubMedCrossRefGoogle Scholar
  39. Huang D.-J., Wang S.-Y. & Chen H.-C. 2004. Effects of the endocrine disrupter chemicals chlordane and lindane on the male green neon shrimp (Neocaridina denticulata). Chemosphere 57: 1621–1627.PubMedCrossRefGoogle Scholar
  40. Hutchinson T.H. 2002. Reproductive and developmental effects of endocrine disrupters in invertebrates: in vitro and in vivo approaches. Toxicol. Lett. 131: 75–81.PubMedCrossRefGoogle Scholar
  41. Hutchinson T.H., Pounds N.A., Hampel M. & Williams T.D. 1999a. Impact of natural and synthetic steroids on the survival, development and reproduction of marine copepods (Tisbe battagliai). Sci. Total Environ. 233: 167–179.CrossRefGoogle Scholar
  42. Hutchinson T.H., Pounds N.A., Hampel M. & Williams T.D. 1999b. Life-cycle studies with marine copepods (Tisbe battagliai) exposed to 20-hydroxyecdysone and diethylstilbestrol. Environ. Toxicol. Chem. 18: 2914–2920.CrossRefGoogle Scholar
  43. Innes D.J. 1997. Sexual reproduction of Daphnia pulex in a temporary habitat. Oecologia 111: 53–60.CrossRefGoogle Scholar
  44. James M.O. & Boyle S.M. 1998. Cytochromes P450 in crustacea. Comp. Biochem. Physiol. C 121: 157–172.PubMedGoogle Scholar
  45. Janer G., LeBlanc G.A. & Porte C. 2005. A comparative study on androgen metabolism in three invertebrate species. Gen. Comp. Endocrinol. 143: 211–221.PubMedCrossRefGoogle Scholar
  46. Jungmann D., Ladewig V., Ludwichowski K.U., Petzsch P. & Nagel R. 2004. Intersexuality in Gammarus fossarum Koch — A common inducible phenomenon? Arch. Hydrobiol. 159: 511–529.CrossRefGoogle Scholar
  47. Katakura Y. 1989. Endocrine and genetic control of sex differentiation in the malacostracan crustacea. Invertebr. Reprod. Dev. 16: 177–182.Google Scholar
  48. Katakura Y. & Hasegawa Y. 1983. Masculinization of females of the isopod crustacean, Armadillidium vulgare, following injections of an active extract of the androgenic gland. Gen. Comp. Endocrinol. 49: 57–62.PubMedCrossRefGoogle Scholar
  49. Kim H.W., Chang E.S. & Mykles D.L. 2005a. Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation. J. Exp. Biol. 208: 3177–3197.PubMedCrossRefGoogle Scholar
  50. Kim H.W., Lee S.G. & Mykles D.L. 2005b. Ecdysteroid-responsive genes, RXR and E75, in the tropical land crab, Gecarcinus lateralis: Differential tissue expression of multiple RXR isoforms generated at three alternative splicing sites in the hinge and ligand-binding domains. Mol. Cell. Endocrinol. 242: 80–95.PubMedCrossRefGoogle Scholar
  51. Köhler H.R., Kloas W., Schirling M., Lutz I., Reye A.L., Langen J.S., Triebskorn R., Nagel R. & Schonfelder G. 2007. Sex steroid receptor evolution and signalling in aquatic invertebrates. Ecotoxicology 16: 131–143.PubMedCrossRefGoogle Scholar
  52. Kummerer K. 2004. Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks. 2nd ed., Springer Verlag, Heidelberg, Germany, 527 pp.Google Scholar
  53. Kusk K.O. & Wollenberger L. 2007. Towards an internationally harmonized test method for reproductive and developmental effects of endocrine disrupters in marine copepods. Ecotoxicology 16: 183–195.PubMedCrossRefGoogle Scholar
  54. Laufer H., Biggers W.J. & Ahl J.S.B. 1998. Stimulation of ovarian maturation in the crayfish Procambarus clarkii by methyl farnesoate. Gen. Comp. Endocrinol. 111: 113–118.PubMedCrossRefGoogle Scholar
  55. LeBlanc G.A. 2007. Crustacean endocrine toxicology: a review. Ecotoxicology 16: 61–81.PubMedCrossRefGoogle Scholar
  56. Lee F.-Y., Shih T.-W. & Chang C.-F. 1997. Isolation and characterization of the female-specific protein (vitellogenin) in mature female hemolymph of the freshwater prawn Macro-brachium rosenbergii: Comparison with ovarian vitellin. Gen. Comp. Endocrinol. 108: 406–415.PubMedCrossRefGoogle Scholar
  57. Lecher P., Defaye D. & Noel P. 1995. Chromosomes and nuclear DNA of crustacea. Invertebr. Reprod. Dev. 27: 85–114.Google Scholar
  58. Martins J., Riberio K., Rangel-Figueiredo T. & Coimbra J. 2007. Reproductive cycle, ovarian development, and vertebrate-type steroids profile in the freshwater prawn Macrobrachium rosenbergii. J. Crustac. Biol. 27: 220–228.CrossRefGoogle Scholar
  59. McCabe J. & Dunn A.M. 1997. Adaptive significance of environmental sex determination in an amphipod. J. Evol. Biol. 10: 515–527.CrossRefGoogle Scholar
  60. McKenney C.L. 2005. The influence of insect juvenile hormone agonists on metamorphosis and reproduction in estuarine crustaceans. Integr. Comp. Biol. 45: 97–105.CrossRefGoogle Scholar
  61. McKenney C.L., Cripe G.M., Foss S.S., Tuberty S.R. & Hoglund M. 2004. Comparative embryonic and larval developmental responses of estuarine shrimp (Palaemonetes pugio) to the juvenile hormone agonist fenoxycarb. Arch. Environ. Contam. Toxicol. 47: 463–470.PubMedCrossRefGoogle Scholar
  62. Medesani D.A., Greco L.S.L. & Rodriguez E.M. 2004. Interference of cadmium and copper with the endocrine control of ovarian growth in the estuarine crab Chasmagnathus granulata. Aquat. Toxicol. 69: 165–174.PubMedCrossRefGoogle Scholar
  63. Mu X. & LeBlanc G.A. 2002. Developmental toxicity of testosterone in the crustacean Daphnia magna involves anti-ecdysteroidal activity. Gen. Comp. Endocrinol. 129: 127–133.PubMedCrossRefGoogle Scholar
  64. Mu X. & Leblanc G.A. 2004. Cross communication between signaling pathways: Juvenoid hormones modulate ecdysteroid activity in a crustacean. J. Exp. Zool. A — Comp. Exp. Biol. 301A: 793–801.CrossRefGoogle Scholar
  65. Nates S.F. & McKenney C.L. 2000. Growth, lipid class and fatty acid composition in juvenile mud crabs (Rhithropanopeus harrisii) following larval exposure to Fenoxycarb (R), insect juvenile hormone analog. Comp. Biochem. Physiol. C 127: 317–325.Google Scholar
  66. Oberdörster E., Rice C.D. & Irwin L.K. 2000. Purification of vitellin from grass shrimp Palaemonetes pugio, generation of monoclonal antibodies, and validation for the detection of lipovitellin in Crustacea. Comp. Biochem. Physiol. C 127: 199–207.Google Scholar
  67. Ohira T., Nishimura T., Sonobe H., Okuno A., Watanabe T., Nagasawa H., Kawazoe I. & Aida K. 1999. Expression of a recombinant molt-inhibiting hormone of the kuruma prawn Penaeus japonicus in Escherichia coli. Biosci. Biotechnol. Biochem. 63: 1576–1581.PubMedCrossRefGoogle Scholar
  68. Okumura T. & Aida K. 2001. Effects of bilateral eyestalk ablation on molting and ovarian development in the giant freshwater prawn, Macrobrachium rosenbergii. Fish. Sci. 67: 1125–1135.CrossRefGoogle Scholar
  69. Okumura T. & Hara M. 2004. Androgenic gland cell structure and spermatogenesis during the molt cycle and correlation to morphotypic differentiation in the giant freshwater prawn, Macrobrachium rosenbergii. Zool. Sci. 21: 621–628.PubMedCrossRefGoogle Scholar
  70. Okumura T. & Sakiyama K. 2004. Hemolymph levels of vertebrate-type steroid hormones in female kuruma prawn Marsupenaeus japonicus (Crustacea: Decapoda: Penaeidae) during natural reproductive cycle and induced ovarian development by eyestalk ablation. Fish. Sci. 70: 372–380.CrossRefGoogle Scholar
  71. Okuno A., Hasegawa Y., Ohira T. & Nagasawa H. 2001. Immuno-logical identification of crustacean androgenic gland hormone, a glycopeptide. Peptides 22: 175–181.PubMedCrossRefGoogle Scholar
  72. Olmstead A.W. & LeBlanc G.A. 2002. Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. J. Exp. Zool. 293: 736–739.PubMedCrossRefGoogle Scholar
  73. Olmstead A.W. & LeBlanc G.A. 2007. The environmental-endocrine basis of gynandromorphism (intersex) in a crustacean. Int. J. Biol. Sci. 3: 77–84.Google Scholar
  74. Peterson J.K., Kashian D.R. & Dodson S.I. 2001. Methoprene and 20-OH-ecdysone affect male production in Daphnia pulex. Environ. Toxicol. Chem. 20: 582–588.PubMedCrossRefGoogle Scholar
  75. Rodriguez E.M., Greco L.S.L., Medesani D.A., Laufer H. & Fingerman M. 2002a. Effect of methyl farnesoate, alone and in combination with other hormones, on ovarian growth of the red swamp crayfish, Procambarus clarkii, during vitellogenesis. Gen. Comp. Endocrinol. 125: 34–40.PubMedCrossRefGoogle Scholar
  76. Rodriguez E.M., Medesani D.A. & Fingerman M. 2007. Endocrine disruption in crustaceans due to pollutants: A review. Comp. Biochem. Physiol. A 146: 661–671.CrossRefGoogle Scholar
  77. Rodriguez E.M., Medesani D.A., Greco L.S.L. & Fingerman M. 2002b. Effects of some steroids and other compounds on ovarian growth of the red swamp crayfish, Procambarus clarkii, during early vitellogenesis. J. Exp. Zool. 292: 82–87.PubMedCrossRefGoogle Scholar
  78. Sagi A., Manor R., Segall C., Davis C. & Khalaila I. 2002. On intersexuality in the crayfish Cherax quadricarinatus: an inducible sexual plasticity model. Invertebr. Reprod. Dev. 41: 27–33.Google Scholar
  79. Sagi A., Shoukrun R., Khalaila I. & Rise M. 1996. Gonad maturation, morphological and physiological changes during the first reproductive cycle of the crayfish Cherax quadricarinatus female. Invertebr. Reprod. Dev. 29: 235–242.Google Scholar
  80. Sanders M.B., Billinghurst Z., Depledge M.H. & Clare A.S. 2005. Larval development and vitellin-like protein expression in Palaemon elegans larvae following xeno-oestrogen exposure. Integr. Comp. Biol. 45: 51–60.CrossRefGoogle Scholar
  81. Sarojini R., Nagabhushanam R., Devi M. & Fingerman M. 1995a. Dopaminergic inhibition of 5-hydroxytryptamine-stimulated testicular maturation in the fiddler crab, Uca pugilator. Comp. Biochem. Physiol. C 111: 287–292.Google Scholar
  82. Sarojini R., Nagabhushanam R. & Fingerman M. 1995b. In vivo effects of dopamine and dopaminergic antagonists on testicular maturation in the red swamp crayfish, Procambarus clarkii. Biol. Bull. 189: 340–346.CrossRefGoogle Scholar
  83. Sarojini R., Nagabhushanam R. & Fingerman M. 1997. An in vitro study of the inhibitory action of methionine enkephalin on ovarian maturation in the red swamp crayfish, Procambarus clarkii. Comp. Biochem. Physiol. C 117: 207–210.Google Scholar
  84. Siwicki K.K., Beltz B.S. & Kravitz E.A. 1987. Proctolin in identified serotonergic, dopaminergic, and cholinergic neurons in the lobster, Homarus americanus. J. Neurosci. 7: 522–532.PubMedGoogle Scholar
  85. Schirling M., Jungmann D., Ladewig V., Ludwichowski K.-U., Nagel R., Köhler H.-R. & Triebskorn R. 2006. Bisphenol A in artificial indoor streams: II. Stress response and gonad histology in Gammarus fossarum (Amphipoda). Ecotoxicology 15: 143–156.PubMedCrossRefGoogle Scholar
  86. Soroka Y., Sagi A., Khalaila I., Abdu U. & Milner Y. 2000. Changes in protein kinase C during vitellogenesis in the crayfish Cherax quadricarinatus — Possible activation by methyl farnesoate. Gen. Comp. Endocrinol. 118: 200–208.PubMedCrossRefGoogle Scholar
  87. Spaziani E., Mattson M.P., Wang W.N.L. & McDougall H.E. 1999. Signaling pathways for ecdysteroid hormone synthesis in crustacean Y-organs. Am. Zool. 39: 496–512.Google Scholar
  88. Stanton M.G. 1968. Colorimetric determination of inorganic phosphate in the presence of biological material and adenosine triphosphate. Anal. Biochem. 22: 27–34.PubMedCrossRefGoogle Scholar
  89. Suzuki S. 1999. Androgenic gland hormone is a sex-reversing factor but cannot be a sex-determining factor in the female crustacean isopods Armadillidium vulgare. Gen. Comp. Endocrinol. 115: 370–378.PubMedCrossRefGoogle Scholar
  90. Tangvuthipong P. & Damrongphol P. 2006. 5-Hydroxytryptamine enhances larval development of the giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture 251: 567–572.CrossRefGoogle Scholar
  91. Tatarazako N. & Oda S. 2007. The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine dirupting effects on crustaceans. Ecotoxicology 16: 197–203.PubMedCrossRefGoogle Scholar
  92. Thornton J.W. 2004. Resurrecting ancient genes: experimental analysis of extinct molecules. Nature Rev. Genet. 5: 366–375.CrossRefPubMedGoogle Scholar
  93. Thornton J.W., Need E. & Crews D. 2003. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Sci. Total Environ. 301: 1714–1717.Google Scholar
  94. Tuberty S.R. & McKenney C.L. 2005. Ecdysteroid responses of estuarine crustaceans exposed through complete larval development to juvenile hormone agonist insecticides. Integr. Comp. Biol. 45: 106–117.CrossRefGoogle Scholar
  95. Vaca A.A. & Alfaro J. 2000. Ovarian maturation and spawning in the white shrimp, Penaeus vannamei, by serotonin injection. Aquaculture 182: 373–385.CrossRefGoogle Scholar
  96. Verslycke T., De Wasch K., De Brabander H.F. & Janssen C.R. 2002. Testosterone metabolism in the estuarine mysid Neomysis integer (Crustacea; Mysidacea): Identification of testosterone metabolites and endogenous vertebrate-type steroids. Gen. Comp. Endocrinol. 126: 190–199.PubMedCrossRefGoogle Scholar
  97. Verslycke T., Ghekiere A., Raimondo S. & Janssen C. 2007. Mysid crustaceans as test models for the screening and testing of endocrine-disrupting chemicals. Ecotoxicology 16: 205–219.PubMedCrossRefGoogle Scholar
  98. Verslycke T., Poelmans S., De Wasch K., De Brabander H.F. & Janssen C.R. 2004. Testosterone and energy metabolism in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following exposure to endocrine disruptors. Environ. Toxicol. Chem. 23: 1289–1296.PubMedCrossRefGoogle Scholar
  99. Vethaak A.D., Rijs G.B.J., Schrap S.M., Ruiter H., Gerritsen A. & Lahr J. 2002. Estrogens and Xeno-Estrogens in the Aquatic Environment of the Netherlands. Occurrence, Potency and Biological Effects. Dutch National Institute of Inland Water Management and Waste Water Treatment (RIZA) & Dutch National Institute for Coastal and Marine Management (RIKZ), Lelystad, Den Haag, 293 pp.Google Scholar
  100. Volz D.C. & Chandler G.T. 2004. An enzyme-linked immunosorbent assay for lipovitellin quantification in copepods: A screening tool for endocrine toxicity. Environ. Toxicol. Chem. 23: 298–305.PubMedCrossRefGoogle Scholar
  101. Volz D.C., Kawaguchi T. & Chandler G.T. 2002. Purification and characterization of the common yolk protein, vitellin, from the estuarine amphipod Leptocheirus plumulosus. Prep. Biochem. Biotechnol. 32: 103–116.PubMedCrossRefGoogle Scholar
  102. Watt P.J. 1994. Parental control of sex ratio in Gammarus duebeni an organism with environmental sex determination. J. Evol. Biol. 7: 177–187.CrossRefGoogle Scholar
  103. Watts M.M., Pascoe D. & Carroll K. 2002. Population responses of the freshwater amphipod Gammarus pulex (L.) to an environmental estrogen, 17 alpha-ethinylestradiol. Environ. Toxicol. Chem. 21: 445–450.PubMedCrossRefGoogle Scholar
  104. Withers P.C. 1992. Comparative Animal Physiology. Harcourt Brace Jovanovich College Publishers, Saunders College Publishing, Fort Worth, Philadelphia, San Diego, New York, Orlando, Austin, San Antonio, Toronto, Montreal, London, Sydney, Tokyo, 949 pp.Google Scholar
  105. Wu X., Hopkins P.M., Palli S.R. & Durica D.S. 2004. Crustacean retinoid-X receptor isoforms: distinctive DNA binding and receptor-receptor interaction with a cognate ecdysteroid receptor. Mol. Cell. Endocrinol. 218: 21–38.PubMedCrossRefGoogle Scholar
  106. Yokota Y., Unuma T., Moriyama A. & Yamano K. 2003. Cleavage site of a major yolk protein (MYP) determined by cDNA isolation and amino acid sequencing in sea urchin, Hemicen-trotus pulcherrimus. Comp. Biochem. Physiol. B 135: 71–81.PubMedCrossRefGoogle Scholar
  107. Zou E. 2005. Impacts of xenobiotics on crustacean molting: The invisible endocrine diruption. Integr. Comp. Biol. 45: 33–38.CrossRefGoogle Scholar
  108. Zou E. & Fingerman M. 1997. Synthetic estrogenic agents do not interfere with sex differentiation but do inhibit molting of the cladoceran Daphnia magna. Bull. Environ. Contam. Toxicol. 58: 596–602.PubMedCrossRefGoogle Scholar
  109. Zou E. & Fingerman M. 1999. Effects of estrogenic agents on chitiobiase activity in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Ecotoxicol. Environ. Saf. 42: 185–190.PubMedCrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  • Edita Mazurová
    • 1
  • Klára Hilscherová
    • 1
    • 4
  • Rita Triebskorn
    • 2
    • 3
  • Heinz-R. Köhler
    • 2
  • Blahoslav Maršálek
    • 1
    • 4
  • Luděk Bláha
    • 1
    • 4
  1. 1.Research Centre for Environmental Chemistry and Ecotoxicology (RECETOX)Masaryk UniversityBrnoCzech Republic
  2. 2.Animal Physiological Ecology DepartmentEberhard-Karls UniversityTübingenGermany
  3. 3.Steinbeis-Transferzentrum für Ökotoxikologie und ÖkophysiologieRottenburgGermany
  4. 4.Institute of BotanyAcademy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations