, Volume 62, Issue 6, pp 697–703 | Cite as

Allozyme variations in six natural populations of scots pine (Pinus sylvestris) in Turkey

Full Paper


Genetic variation in six natural populations of Scots pine (Pinus sylvestris L.) was determined with isoenzyme analyses. For this purpose, haploid female gametophytes of seeds and horizontal starch gel electrophoresis technique were used. A total of 17 loci and 58 alleles were observed in studying 10 enzyme systems. The average proportion of polymorphic loci for populations ranged from 58.8% to 70.6%. The average number of alleles per locus per population was 2.65. The mean estimated expected heterozygosity (He) of populations was 0.294. A rather high proportion of genetic diversity (96.4%) was due to within-population variation and the remaining (3.6%) was due to variation among populations. The level of gene flow (Nem) was found to be 6.69 per generation. Nei’s genetic distance coefficient ranged from 0.006 to 0.027 (mean 0.017) among all possible population pairs. The mean value of Nei’s genetic distance is similar to the values reported for other European Scots pine populations. The low mean value of Nei’s genetic distance among populations is enough to explain low interpopulation variation. According to genetic variation parameters, three out of six populations (Akdagmadeni-Yozgat, Refahiye-Erzincan and Vezirkopru-Samsun) appear to be preferable populations for genetic conservation and forest tree breeding programs.

Key words

Pinus sylvestris allozymes genetic variation geographical variation starch gel electrophoresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cepel N., Dundar M. & Gunel A. 1977. Türkiye’nin önemli yetişme bögelerinde saf sarıçam ormanlarının gelişimi ile bazı edafik ve fizyografik etkenler arasındaki ilişkiler. TUBITAK yayinlari, No. 354.Google Scholar
  2. Cheddadi R., Vendramin G.G., Litt T., Françios L., Kageyama M., Lorentz S., Laurent JM., Beaulieu JL., Sadori L., Jost A. & Lunt D. 2006. Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecol. Biogeograph. 15: 271–282.Google Scholar
  3. Cheliak W.M. & Pitel J.A. 1985. Inheritance and linkage of allozymes in Larix laricina. Silvae Genetica 34: 142–148.Google Scholar
  4. Conkle M.T., Hodgskiss P.O., Nunnally L.B. & Hunter S.C. 1982. Starch gel electrophoresis of Conifer seeds: A Laboratory Manual. U.S.D.A. Gen. Techn. Rept. PSW-64, 18 pp.Google Scholar
  5. Conkle M.T., Schiller G. & Grunwald C. 1988. Electrophoretic analysis of diversity and phylogeny of Pinus brutia and closely related taxa. System. Bot. 13(3): 411–424.CrossRefGoogle Scholar
  6. Dvornyk V. 2001. Genetic variability and differentiation of geographically marginal Scots pine populations from Ukraine. Silvae Genetica 50(2): 64–69.Google Scholar
  7. Ekim T. & Guner A. 1986. The Anatolian diagonal: fact or fiction? Proceedings of the Royal Soc. of Edinburgh, 89B: 69–77.Google Scholar
  8. Giannini R., Morgante M. & Vendramin G.G. 1991. Allozyme variation in Italian populations of Picea abies (L.) Karst. Silvae Genetica 40: 160–166.Google Scholar
  9. Giray N. 1994. Pinus sylvestris. Ormancilik Arastirma Enstitusu Yayinlari, El Kitabi Dizisi: 7, Ankara. (in Turkish)Google Scholar
  10. Goncharenko G.G., Silin A.E. & Padutov V.E. 1994. Allozyme variation in natural population of Eurasian pines. III. Silvae Genetica 43(2–3): 119–131.Google Scholar
  11. Gullberg U., Yazdani R., Rudin D. & Ryman N. 1985. Allozyme variation in Scots pine (Pinus sylvestris L.) in Sweden. Silvae Genetica 34(6): 193–200.Google Scholar
  12. Hamrick J.L., Mitton J.B. & Linhart Y.B. 1981. Levels of genetic variation in trees: Influence of life history characteristics, pp. 35–41. In: Conkle, M.T. (ed.) Proc. of Symp. on Isozymes of North American Forest Trees and Insects. USDA Gen. Tech. Rep. PSW-48.Google Scholar
  13. Hamrick J.L. & Godt M.J. 1989. Allozyme diversity in plant species, pp 43–63. In: Brown A.H.D., Clegg M.T., Kahler A.L. & Weir B.S. (eds), Plant Population Genetics, Breeding and Germplasm Resources. Sinauer, Sunderland, Mass.Google Scholar
  14. Hamrick J.L., Godt M.J.W. & Shermann-Broyles S.L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95–124.CrossRefGoogle Scholar
  15. Howe G.T., Aitken S.N., Neale D.B., Jermstad K.D., Wheeler N.C. & Chen T.H.H. 2003. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can. J. Bot. 81: 1247–1266.CrossRefGoogle Scholar
  16. Isik F., Isik K. & Lee S.J. 1999. Genetic variation in Pinus brutia Ten. in Turkey: I. Growth, biomass and stem quality traits. Int. J. Forest Genet. 6(2): 89–99.Google Scholar
  17. Isik K. & Kara N. 1997. Altitudinal variation in Pinus brutia Ten. and its implication in genetic conservation and seed transfers in Southern Turkey. Silvae Genetica 46(2–3): 113–120.Google Scholar
  18. Kara N. 1996. Investigation on izoenzyme variation in natural populations of Turkish red pine (Pinus brutia Ten.). M.Sc. Thesis, Akdeniz University, Institute of Sciences, Antalya, 77 pp. (in Turkish)Google Scholar
  19. Kara N., Korol L., Isik K. & Schiller G. 1997. Genetic diversity in Pinus brutia Ten.: Altitudinal variation. Silvae Genetica 46(2–3): 155–160.Google Scholar
  20. Kinloch B.B., Westfall R.D. & Forrest G.I. 1986. Caledonian Scots pine: origins and genetic structure. New Phytol. 104: 703–729.CrossRefGoogle Scholar
  21. Korshikov I.I., Velikoridko T.I. & Butilskaya L.A. 2002. Genetic structure and variation in Pinus sylvestris L. populations degrading due to pollution-induced injury. Silvae Genetica 51(2–3): 45–49.Google Scholar
  22. Matyas C., Ackzell L. & Samuel C.J. A. 2004. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Scots pine (Pinus sylvestris). Int. Plant Genetic Resources Institute, Rome, Italy, 6 p.Google Scholar
  23. Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. 70(12): 3321–3323.PubMedCrossRefGoogle Scholar
  24. Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.PubMedGoogle Scholar
  25. Prus-Glowacki W. & Bernard E. 1994. Allozyme variation in populations of Pinus sylvestris L. from a 1912 provenance trial in Pulawy (Poland). Silvae Genetica 43(2–3): 132–138.Google Scholar
  26. Prus-Glowacki W. & Stephan B.R. 1994. Genetic variation of Pinus sylvestris from Spain in relation to other European populations. Silvae Genetica 43(1): 7–14.Google Scholar
  27. Sharma K., Degen B., Von Wuehlisch G. & Singh N.B. 2002. Allozyme variation in eight natural populations of Pinus roxburghii SARG. in India. Silvae Genetica 51(5–6): 246–253.Google Scholar
  28. Slavov G.T. & Zhelev P. 2004. Allozyme variation, differentiation, and inbreeding in populations of Pinus mugo in Bulgaria. Can. J. For. Res. 34: 2611–2617.CrossRefGoogle Scholar
  29. Swofford D.L. & Salender R.B. 1981. BIOSYS-1: A Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283.Google Scholar
  30. Turna I. 2003. Variation of morphological and electrophoretic characters of 11 populations of Scots pine in Turkey. Israel J. Plant Sci. 51(3): 223–230.CrossRefGoogle Scholar
  31. Unal B.B. 2005. Determination of genetic variation in natural populations of Scots pine [Pinus sylvestris L. (Pinaceae)]. M.Sc. Thesis, Akdeniz University, Institute of Sciences, Antalya, 89 pp. (in Turkish)Google Scholar
  32. Willis K.J., Bennett K.D. & Birks H. J. 1998. The Late Quartetrnary dynamics of pines in Europa, pp. 107–121. In: David M. Richardson (ed.), Ecology and Biogeography of Pinus. Cambridge University Press, 545 pp.Google Scholar
  33. Wright S. 1951. The genetical structure of populations. Ann. Eugenics 15: 323–354.Google Scholar
  34. Yahyaoglu Z., Genc M., Ucler A.O. & Gunes I. 1994. Bazi saricam (Pinus sylvestris L.) populasyonlarinda genetik yapinin elektroforetik yontemlerle analizi II. II. Ulusal Biyoteknoloji Simpozyumu. Bildiri ve Poster Ozetleri. Ankara.Google Scholar

Copyright information

© Institute of Botany, Slovak Academy of Sciences 2007

Authors and Affiliations

  1. 1.Faculty of Arts and Sciences, Biology Dept.Akdeniz UniversityAntalya-Turkey

Personalised recommendations