Advertisement

Biologia

, Volume 62, Issue 2, pp 228–231 | Cite as

Is Testudo werneri a distinct species?

  • Pavel Široký
  • Uwe Fritz
Short Communication

Abstract

Sequence variation of a 1066 bp long mtDNA fragment (cytochrome b gene, adjacent part of tRNA-Thr gene) of four known-locality samples of Testudo kleinmanni (Tripolitania, Libya) and of four samples of T. werneri (Negev, Israel) is compared with additional five sequences of pet trade tortoises allegedly representing T. kleinmanni. Four haplotypes, differing in one to four mutation steps occur. The most common haplotype was shared by all known-locality samples of T. kleinmanni and three T. werneri. Sequence variation within each nominal species and in the pooled sample of T. kleinmanni, T. werneri and pet trade tortoises is the lowest known for any Testudo species. We conclude there is no support for the validity of T. werneri Perälä, 2001.

Key words

Testudo kleinmanni Testudo werneri mtDNA sequence variation systematics taxonomy Israel Libya 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baha el Din S. 2006. A Guide to the Reptiles and Amphibians of Egypt. The American University in Cairo Press, Cairo and New York, xvi, 359 pp.Google Scholar
  2. Bour R. 1996. Une nouvelle espèce de tortue terrestre dans le Péloponnèse (Grèce). Dumerilia 2 (1995): 23–54.Google Scholar
  3. Bringsøe H. & Buskirk J.R. 1998. Distribution of Testudo kleinmanni Lortet, 1883 and Testudo graeca Linnaeus, 1758 in the Negev Desert, southern Israel. Faunist. Abh. Mus. Tierkd. Dresden 21(Suppl.): 23–30.Google Scholar
  4. Carretero M.A., Znari M., Harris D.J. & Macé J.C. 2005. Morphological divergence among populations of Testudo graeca from west-central Morocco. Anim. Biol. 55: 259–279.CrossRefGoogle Scholar
  5. Chkhikvadze V.M. 1988. O sistematicheskom polozhenii sovremennykh sukhoputnykh cherepakh Sredneĭ Azii i Kazakhstana. Izv. Akad. Nauk GSSR, Ser. Biol. 14: 110–113.Google Scholar
  6. Chkhikvadze V.M., Amiranashvili N.G. & Ataev Ch. 1990. Novyĭ podvid sukhoputnoĭ cherepakhi iz yugo-zapadnogo Turkmenistana. Izv. Akad. Nauk Turkmensk. SSR, Ser. Biol. 1: 72–75.Google Scholar
  7. Chkhikvadze V.M. & Bakradze M.A. 1991. O sistematicheskom polozhenii sovremennoĭ sukhoputnoĭ cherepakhi iz doliny reki Araks. Trudy Tbilissk. Gosud. Univ. 305: 59–63.Google Scholar
  8. Chkhikvadze V.M. & Bakradze M.A. 2002. Novyĭ podvid sukhoputnoĭ cherepak hi iz Dagestana. Trudy Inst. Zool. Akad. Nauk Gruzii 21: 276–279.Google Scholar
  9. Chkhikvadze V.M. & Tuniyev B.S. 1986. O sistematicheskom polozhenii sovremennoĭ sukhoputnoĭ cherepakhi zapadnogo Zakavakazya. Soobshch. Akad. Nauk Gruzinsk. SSR 124: 617–620.Google Scholar
  10. Clement M., Posada D. & Crandall K.A. 2000. tcs: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657–1660.PubMedCrossRefGoogle Scholar
  11. Crandall K., Templeton A.R. & Sing C.F. 1994. Intraspecific phylogenetics: problems and solutions, pp. 273–297. In: Scotland R.W., Siebert D.J. & Williams D.M. (eds), Models in Phylogeny Reconstruction, Clarendon Press, Oxford.Google Scholar
  12. Fritz U., Široký P., Kami H. & Wink M. 2005. Environmentally caused dwarfism or a valid species — Is Testudo weissingeri Bour, 1996 a distinct evolutionary lineage? New evidence from mitochondrial and nuclear genomic markers. Mol. Phylogenet. Evol. 37: 389–401.PubMedCrossRefGoogle Scholar
  13. Fritz U., Auer M., Bertolero A., Cheylan M., Fattizzo T., Hundsdörfer A.K., Martín Sampayo M., Pretus J.L., Široký P. & Wink M. 2006. A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zoologica Scripta 35: 531–543.CrossRefGoogle Scholar
  14. Fritz U., Hundsdörfer A.K., Široký P., Auer M., Kami H., Lehmann J., Mazanaeva L.F., Türkozan O. & Wink M. 2007. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex; Testudines, Testudinidae). Amphibia-Reptilia 28: 97–121.CrossRefGoogle Scholar
  15. Fritz U. & Buskirk J.R. 1997. The occurrence of Testudo kleinmanni in Tripolitania. Čas. Národ. Muz., Řada Přírod. 167: 143–144.Google Scholar
  16. Fu Y.-X. & Li W.-H. 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709.PubMedGoogle Scholar
  17. Hall T.A. 1999. bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95–98.Google Scholar
  18. Harris D.J., Znari M., Macé J.-C. & Carretero M.A. 2003. Genetic variation in Testudo graeca from Morocco estimated using 12S rRNA sequencing. Rev. Esp. Herpetol. 17: 5–9.Google Scholar
  19. Highfield A.C. 1990. Tortoises of north Africa; taxonomy, nomenclature, phylogeny and evolution with notes on field studies in Tunisia. J. Chelon. Herpetol. 1(2): 1–56.Google Scholar
  20. Highfield A.C. & Martin J. 1989a. A revision of the Testudines of North Africa, Asia and Europe. Genus: Testudo. J. Chelon. Herpetol. 1(1): 1–12.Google Scholar
  21. Highfield A.C. & Martin J. 1989b. Testudo whitei Bennett 1836. New light on an old carapace — Gilbert White’s Selborne tortoise re-discovered. J. Chelon. Herpetol. 1(1): 13–22.Google Scholar
  22. Highfield A.C. & Martin J. 1989c. Description of a miniature tortoise Testudo flavominimaralis n. species from North Africa. The Tortoise Trust/Tortoise Survival Project, London, 4 pp.Google Scholar
  23. Kumar S., Tamura K. & Nei N. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings Bioinform. 5: 150–163.CrossRefGoogle Scholar
  24. Le M., Raxworthy C.J., McCord W.P. & Mertz L. 2006. A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes. Mol. Phylogenet. Evol. 40: 517–531.PubMedCrossRefGoogle Scholar
  25. Mayer R. 1992. Europäische Landschildkröten. Leben — Haltung — Zucht. Agrar Verlag Allgäu, Kempten, 127 pp.Google Scholar
  26. Parham J.F., Macey J.R., Papenfuss T.J., Feldman C.R., Türkozan O., Polymeni R. & Boore J. 2006. The phylogeny of Mediterranean tortoises and their close relatives based on complete mitochondrial genome sequences from museum specimens. Mol. Phylogenet. Evol. 38: 50–64.PubMedCrossRefGoogle Scholar
  27. Perälä J. 1996. Etelä-Turkin maakilpikonnista. Morfologisia ja ekologisia eroja (Testudo ibera Pallas 1814 & Testudo ibera anamurensis Weissinger 1987) sekä uuden maakilpikonnalajin kuvaus + 15 kuvaa, pp. 14–26. In: Perälä J., Vikberg J. & Kanza M. (eds), Virallinen kongressijulkaisu. Herpetokongressi I, Suomen herpetologinen yhdistys ry, Helsinki.Google Scholar
  28. Perälä J. 2001. A new species of Testudo (Testudines: Testudinidae) from the Middle East, with implications for conservation. J. Herpetol. 35: 567–582.CrossRefGoogle Scholar
  29. Perälä J. 2002a. The genus Testudo (Testudines: Testudinidae): phylogenetic inferences. Chelonii 3: 32–39.Google Scholar
  30. Perälä J. 2002b. Biodiversity in relatively neglected taxa of Testudo L., 1758 s. l. Chelonii 3: 40–53.Google Scholar
  31. Perälä J. 2002c. Morphological variation among Middle Eastern Testudo graeca L., 1758 (sensu lato), with a focus on taxonomy. Chelonii 3: 78–108.Google Scholar
  32. Perälä J. 2003a. Testudo kleinmanni. In: IUCN Red List of Threatened Species. www.iucnredlist.org.Google Scholar
  33. Perälä J. 2003b. Testudo werneri. In: IUCN Red List of Threatened Species. www.iucnredlist.org.Google Scholar
  34. Pieh A. 2001. Testudo graeca soussensis, eine neue Unterart der Maurischen Landschildkröte aus dem Sousstal (Nordwest-Marokko). Salamandra 36 (2000): 209–222.Google Scholar
  35. Pieh A. & Perälä J. 2002. Variabilität von Testudo graeca Linnaeus, 1758 im östlichen Nordafrika mit Beschreibung eines neuen Taxons von der Cyrenaika (Nordostlibyen). Herpetozoa 15: 3–28.Google Scholar
  36. Pieh A. & Perälä J. 2004. Variabilität der Maurischen Landschildkröten (Testudo graeca Linnaeus, 1758 — Komplex) im zentralen und nordwestlichen Marokko mit Beschreibung zweier neuer Taxa. Herpetozoa 17: 19–47.Google Scholar
  37. Rozas J., Sánchez-del Barrio J.C., Messeguer X. & Rozas R. 2003. dnasp, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19: 2496–2497.PubMedCrossRefGoogle Scholar
  38. Schleich H.H., Kästle W. & Kabisch K. 1996. Amphibians and Reptiles of North Africa. Koeltz Scientific Books, Königstein, IV, 627 pp.Google Scholar
  39. Schneider W. & Schneider C. 2006. Field notes on the Egyptian tortoise, Testudo kleinmanni Lortet, 1883 in Libya. Radiata 15: 11–19.Google Scholar
  40. van der Kuyl A.C., Ballasina D.L.P., Dekker J.T., Maas H., Willemsen R.E. & Goudsmit J. 2002. Phylogenetic relationships among the species of the genus Testudo (Testudines: Testudinidae) inferred from mitochondrial 12S rRNA gene sequences. Mol. Phylogenet. Evol. 22: 174–183.PubMedCrossRefGoogle Scholar
  41. van der Kuyl A.C., Ballasina D.L.P. & Zorgdrager F. 2005. Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and the Middle East. BMC Evol. Biol. 5: 29.PubMedCrossRefGoogle Scholar
  42. Vetter H. 2002. Terralog: Turtles of the World Vol. 1. Africa, Europe and Western Asia. Chimaira, Frankfurt am Main, 96 pp.Google Scholar
  43. Weissinger H. 1987. Testudo graeca anamurensis ssp. nov. aus Kleinasien. ÖGH-Nachrichten 10/11: 14–18.Google Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2007

Authors and Affiliations

  • Pavel Široký
    • 1
  • Uwe Fritz
    • 2
  1. 1.Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and EcologyUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  2. 2.Museum of Zoology (Museum für Tierkunde)Natural History State Collections DresdenDresdenGermany

Personalised recommendations