, Volume 62, Issue 2, pp 210–213 | Cite as

Short term effects of exposition to artificial ultraviolet radiation on Parabroteas sarsi (Copepoda, Calanoida)

  • Patricio De los Ríos


The increase in the penetration of ultraviolet radiation that has been reported lately for freshwater ecosystems in southern South America would allegedly generate alterations in ecological processes. In this respect the mortality of Parabroteas sarsi, a calanoid copepod distributed in South American lakes and ponds, was studied. Specimens were reared at two different concentrations of dissolved organic carbon and subjected to 72 h exposure to artificial ultraviolet radiation. At high dissolved organic carbon concentration the mortality of P. sarsi increased at 24 h and stabilized at 48 and 72 h, whereas at low dissolved organic carbon concentration mortality increased linearly during the studied period. The results support both the description of a screen effect of dissolved organic carbon against ultraviolet radiation, and the potential photorepairing role of visible radiation that explains the increase of mortality in conditions of low dissolved organic carbon concentration.

Key words

ultraviolet radiation zooplankton dissolved organic carbon calanoid copepods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cabrera S., Bozzo S. & Fuenzalida H. 1995. Variations in UV radiation in Chile. J. Photochem. Photobiol. B Biol. 28: 137–142.CrossRefGoogle Scholar
  2. Campos H. 1984. Limnological study of Araucanian lakes (Chile). Verh. Int. Verein. Theor. Angew. Limnol. 22: 1319–1327.Google Scholar
  3. De los Ríos P. 2004. Lethal effects of ultraviolet radiation under different concentrations of disolved organic carbon on Neobosmina chilensis (Daday, 1902) (Cladocera, Bosminidae). Crustaceana 77: 989–995.CrossRefGoogle Scholar
  4. De los Ríos P. 2005a. Survival of pigmented freshwater zooplankton exposed to artificial ultraviolet radiation and two levels of dissolved organic carbon. Pol. J. Ecol. 53: 113–116.Google Scholar
  5. De los Ríos P. 2005b. Richness and distribution of zooplanktonic crustacean species in Chilean altiplanic and southern Patagonia ponds. Pol. J. Env. Stud. 14: 817–822.Google Scholar
  6. De los Ríos P. & Contreras P. 2005. Salinity level for occurrence of calanoids copepods in shallow ponds in South American Altiplano and Chilean Patagonia. Pol. J. Ecol. 53: 105–111Google Scholar
  7. De los Ríos P. & Soto D. 2005. Survival of two species of crustacean zooplankton under to two chlorophyll concentrations and protection or exposure to natural ultraviolet radiation. Crustaceana 78: 163–169.CrossRefGoogle Scholar
  8. De los Ríos P. & Soto D. 2006. Structure of the zooplanktonic crustaceous chilean lacustre assemblages: role of the trophic status and protection resources. Crustaceana 79: 23–32CrossRefGoogle Scholar
  9. Gillooly J.F. & Dodson S.I. 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnol. Oceanogr. 45: 22–30.CrossRefGoogle Scholar
  10. Gool E. van 1998. Diel vertical migration of Dophnia: an inquiry into mechanisms of phototactic behaviour. PhD Thesis, Universiteit van Amsterdam, Amsterdam, 117 pp.Google Scholar
  11. Hebert P.D.N. & Emery C.J. 1990. The adaptative significance of cuticular pigmentation in Daphnia. Funct. Ecol. 4: 703–710.CrossRefGoogle Scholar
  12. Helbling E.W., Zaratti F., Sala L.O., Palenque E.R., Menchim C.F. & Villafañe V.E. 2002. Mycosporine-like amino acids protect the copepod Boeckella titicacae (Harding) against high levels of solar UVR. J. Plankton Res. 24: 225–234.CrossRefGoogle Scholar
  13. Hessen D.O., Borgeraas J., Kessñer K. & Refseth U.H. 1999. UV-B susceptibility and photoreaction of Arctic Daphnia morphotypes. Pol. Res. 18: 345–352.CrossRefGoogle Scholar
  14. Leech D.M. & Williamson C.E. 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon, or lake transparency? Ecol. Appl. 10: 1530–1540.Google Scholar
  15. Leech D.M. & Williamson C.E. 2001. In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnol. Oceanogr. 46: 416–420.CrossRefGoogle Scholar
  16. Menu-Marque S. & Balseiro E. 2000. Boeckella antiqua n.sp. (Copepoda, Calanoida) from Patagonia. Hydrobiologia 429: 1–7CrossRefGoogle Scholar
  17. Modenutti B.E., Balseiro E.G., Queimaliños C.P., Suarez D.A., Dieguez M.C. & Albariño R.J. 1998. Structure and dynamics of food webs in Andean lakes. Lakes and Reservoirs: Res. Manag. 3: 179–186.CrossRefGoogle Scholar
  18. Morris D.P., Zagarese H.E., Williamson C.E., Balseiro E.G., Hargreaves B.R., Modenutti B.E., Moeller R.E. & Queimaliños C.P. 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40: 1381–1391.CrossRefGoogle Scholar
  19. Pedrozo F., Chillrud S., Temporetti P. & Díaz M. 1993. Chemical composition and nutrient limitation in rivers and lakes of northern Patagonian Andes (39.5′ 42 S; 71 W) (Rep Argentina). Verh. Int. Verein. Theor. Angew. Limnol. 25: 207–214.Google Scholar
  20. Pugh P.J.A., Dartnall H.J.G. & McInnes S.J. 2002. The nonmarine Crustacea of Antarctica and the Islands of the Southern Ocean: biodiversity and biogeography. J. Nat. Hist. 36: 1047–1103.CrossRefGoogle Scholar
  21. Quirós R. & Drago E. 1999. The environmental state of Argentinean lakes: an overview. Lakes and Reservoirs: Res. Manag. 4: 55–64CrossRefGoogle Scholar
  22. Rautio M. & Korkhola A. 2002a. UV-induced pigmentation in subarctic Daphnia. Limnol. Oceanogr. 47: 295–299.CrossRefGoogle Scholar
  23. Rautio M. & Korkhola A. 2002b. Effects of ultraviolet radiation and dissolved organic carbon on the survival of subarctic zooplankton. Pol. Biol. 25: 460–468.Google Scholar
  24. Reche I., Pace M.L. & Cole J.J. 1998. Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon. Microbial Ecology 36: 270–280.CrossRefPubMedGoogle Scholar
  25. Rhode S.C., Pawlowski M. & Tollrian R. 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412: 69–72.PubMedCrossRefGoogle Scholar
  26. Riessig M., Modenutti B., Balseiro E. & Queimaliños C. 2004. The role of Parabroteas sarsi in the Pelagic food web of a large Andean lakes. Hydrobiologia 524: 67–77CrossRefGoogle Scholar
  27. Soto D. & Campos H. 1995. Los lagos oligotróficos del bosque templado húmedo del sur de Chile, pp. 134–148. In: Armesto J., Khalin M., & Villagrán M. (eds), Ecología del bosque Chileno, Editorial Universitaria, Santiago de Chile.Google Scholar
  28. Soto D. & De los Ríos P. 2006. Influence of trophic status and conductivity on zooplankton composition in lakes and ponds of Torres del Paine National Park (Chile). Biologia, Bratislava 61: 541–546.CrossRefGoogle Scholar
  29. Soto D. & Zúñiga L. 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Rev. Chil. Hist. Nat. 64: 569–581.Google Scholar
  30. Storz U.C. & Paul R.J. 1998. Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. J. Comp. Physiol. A 183: 709–717.CrossRefGoogle Scholar
  31. Tartarotti B., Baffico G., Temporetti P. & Zagarese H.E. 2004. Mycosporine-like amino acids in planktonic organisms living under different UV exposuré conditions in Patagonian Andes. J. Plankton Res. 26: 753–762.CrossRefGoogle Scholar
  32. Tartarotti B., Cabrera S., Psenner R. & Sommaruga R. 1999. Survivorship of Cyclops abyssorum tatricus (Cyclopoida, Copepoda) and Boeckella gracilipes (Calanoida, Copepoda) under ambient levels of solar UVB radiation in two high-mountain lakes. J. Plankton Res. 21: 549–560.CrossRefGoogle Scholar
  33. Tartarotti B., Cravero W. & Zagarese H.E. 2000. Biological weighting function for the mortality of Boeckella gracilipes (Copepoda: Crustacea) derived from experiments with natural solar radiation. J. Photochem. Photobiol. B Biol. 72: 314–319.CrossRefGoogle Scholar
  34. Vareschi E. & Wübben D. 2001. Vertical migration of Daphnia pulex in response to UV radiation. Verh. Int. Verein. Theor. Angew. Limnol. 27: 3349–3353.Google Scholar
  35. Villafañe V.E., Andrade M., Lairana V., Zaratti F. & Helbling E.W. 1999. Inhibition of phytoplankton photosyntesis by solar ultraviolet radiation: studies in lake Titicaca, Bolivia. Freshwater Biol. 42: 215–224.CrossRefGoogle Scholar
  36. Villafañe, V.E., Helbling, E.W. & Zagarese, H.E. 2001. Solar ultraviolet radiation and its impact on aquatic ecosystems of Patagonia, South America. Ambio 30: 112–117.PubMedCrossRefGoogle Scholar
  37. Williamson, C.E., Olson, S., Lott, S.E., Walker, N.D., Engstrom, D.R. & Hargreaves, B.R. 2001. Ultraviolet radiation and zooplankton following deglatiation in Glacier Bay, Alaska. Ecology 82: 1748–1760.CrossRefGoogle Scholar
  38. Zagarese, H.E., Cravero, W., Gonzalez, P. & Pedrozo, F. 1998a. Copepod mortality induced by fluctuating levels of natural ultraviolet radiation simulating vertical water mixing. Limnol. Oceanogr. 43: 169–174.CrossRefGoogle Scholar
  39. Zagarese H.E., Díaz M., Pedrozo F. & Ubeda M. 1998b. Mountain lakes in northwestern Patagonia. Verh. Int. Verein. Theor. Angew. Limnol. 27: 533–538.Google Scholar
  40. Zagarese H.E., Feldman M. & Williamson C.E. 1997a. UV-B-induced damage and photoreactivation in three species of Boeckella (Copepoda: Calanoida). J. Plankton Res. 19: 357–367.CrossRefGoogle Scholar
  41. Zagarese H.E., Tartarotti B., Cravero W. & Gonzalez P. 1998c. UV damage in shallow lakes: the implications of water mixing. J. Plankton Res. 20: 1423–1433.CrossRefGoogle Scholar
  42. Zagarese H.E., Williamson C.E., Vail T.L., Olsen O. & Queimaliños C.P. 1997b. Long-term exposure of Boeckella gibbosa (Copepoda, Calanoida) to in situ levels of solar UVB radiation. Freshwater Biol. 37: 99–106.CrossRefGoogle Scholar
  43. Zellmer I.D. 1996. The impact of food quantity on UV-B tolerance and recovery from UV-B damage in Daphnia pulex. Hydrobiologia 319: 87–92.CrossRefGoogle Scholar
  44. Zellmer I.D. 1998. The effect of solar UVA and UVB on subarctic Daphnia pulicaria in its natural habitat. Hydrobiologia 379: 55–62.CrossRefGoogle Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2007

Authors and Affiliations

  • Patricio De los Ríos
    • 1
  1. 1.Facultad de Recursos Naturales, Escuela de Ciencias AmbientalesUniversidad Católica de TemucoTemucoChile

Personalised recommendations