Chemical Papers

, Volume 67, Issue 7, pp 730–736 | Cite as

Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane

  • Shahriar Shadabi
  • Ali Reza Ghiasvand
  • Payman Hashemi
Original Paper

Abstract

Olive oil mill wastewater (OMWW) is very rich in phenolic compounds especially the key compounds of caffeic acid (CA), hydroxytyrosol (HTY), and tyrosol (TY). Therefore, the development of new and effective analytical and industrial methods for the separation and concentration of these valuable compounds has attracted great attention in the last decades. In this study, a selective transport and separation method for CA, HTY, and TY from OMWW samples, obtained from different olive orchards, using a new bulk liquid membrane (BLM) procedure was developed. Various factors influencing the transport efficiency such as pH of the source and receiving phases, nature and volume of the organic membrane, stirring rate, and transport time were investigated and optimized. Under optimal experimental conditions, the transport efficiencies of CA, HTY, and TY from the OMWW samples of 90.1 %, 28.4 %, and 34.9 % were obtained, respectively. Relative standard deviations (RSDs, n = 7) were found to be 4.1 %, 3.8 %, and 3.0 % and the limits of detection (LODs) obtained were 0.001 mg L−1, 0.011 mg L−1, and 0.008 mg L−1, for CA, HTY, and TY, respectively.

Keywords

bulk liquid membrane HPLC OMWW caffeic acid hydroxytyrosol tyrosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2013_373_MOESM1_ESM.docx (28 kb)
Supplementary material, approximately 27.6 KB.

References

  1. Ben Sassi, A., Boularbah, A., Jaouad, A., Walker, G., & Boussaid, A. (2006). A comparison of olive oil mill wastewaters (OMW) from three different processes in Morocco. Process Biochemistry, 41, 74–78. DOI: 10.1016/j.procbio.2005.03.074.CrossRefGoogle Scholar
  2. Bertin, L., Ferri, F., Marchetti, L., & Fabio, F. (2010). Valorization of olive mill wastewater through liquid-solid extraction of the phenolic fraction. Journal of Biotechnology, 150(Supplement), 195. DOI: 10.1016/j.jbiotec.2010.08.508.CrossRefGoogle Scholar
  3. De Leonardis, A., Macciola, V., Lembo, G., Aretini, A., & Nag, A. (2007). Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chemistry, 100, 998–1004. DOI: 10.1016/j.foodchem.2005.10.057.CrossRefGoogle Scholar
  4. DellaGreca, M., Previtera, L., Temussi, F., & Zarrelli, A. (2004). Low-molecular-weight components of olive oil mill waste-waters. Phytochemical Analysis, 15, 184–188. DOI: 10.1002/pca.766.CrossRefGoogle Scholar
  5. De Marco, E., Savarese, M., Paduano, A., & Sacchi, R. (2007). Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chemistry, 104, 858–867. DOI: 10.1016/j.foodchem.2006.10.005.CrossRefGoogle Scholar
  6. Fki, I., Allouche, N., & Sayadi, S. (2005). The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chemistry, 93, 197–204. DOI: 10.1016/j.foodchem.2004.09.014.CrossRefGoogle Scholar
  7. Isidori, M., Lavorgna, M., Nardelli, A., & Parrella, A. (2005). Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and Vibrio fischeri metabolism. Journal of Agricultural and Food Chemistry, 53, 8414–8417. DOI: 10.1021/jf0511695.CrossRefGoogle Scholar
  8. Jönsson, J. Å., & Mathiasson, L. (1999). Liquid membrane extraction in analytical sample preparation: I. Principles. TrAC Trends in Analytical Chemistry, 18, 318–325. DOI: 10.1016/s0165-9936(99)00102-8.CrossRefGoogle Scholar
  9. Khoufi, S., Aloui, F., & Sayadi, S. (2008). Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion. Journal of Hazardous Materials, 151, 531–539. DOI: 10.1016/j.jhazmat.2007.06.017.CrossRefGoogle Scholar
  10. Knutsson, M., Lundh, J., Mathiasson, L., Jönsson, J. Å., & Sundin, P. (1996). Supported liquid membranes for the extraction of phenolic acids from circulating nutrient solutions. Analytical Letters, 29, 1619–1635. DOI: 10.1080/00032719608001509.CrossRefGoogle Scholar
  11. Lafka, T. I., Lazou, A. E., Sinanoglou, V. J., & Lazos, E. S. (2011). Phenolic and antioxidant potential of olive oil mill wastes. Food Chemistry, 125, 92–98. DOI: 10.1016/j.foodchem.2010.08.041.CrossRefGoogle Scholar
  12. Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J. C., Lorquin, J., Delattre, M., Simon, J. L., Asther, M., & Labat, M. (2001). Simple phenolic content in olive oil residues as a function of extraction systems. Food Chemistry, 75, 501–507. DOI: 10.1016/s0308-8146 (01)00227-8.CrossRefGoogle Scholar
  13. López-López, J. A., Mendiguchía, C., Pinto, J. J., & Moreno, C. (2010). Liquid membranes for quantification and speciation of trace metals in natural waters. TrAC Trends in Analytical Chemistry, 29, 645–653. DOI: 10.1016/j.trac.2010.01.007.CrossRefGoogle Scholar
  14. Luque, M., Luque-Pérez, E., Ríos, A., & Valcárcel, M. (2000). Supported liquid membranes for the determination of vanillin in food samples with amperometric detection. Analytica Chimica Acta, 410, 127–134. DOI: 10.1016/s0003-2670(00)00737-6.CrossRefGoogle Scholar
  15. Madaeni, S. S., Jamali, Z., & Islami, N. (2011). Highly efficient and selective transport of methylene blue through a bulk liquid membrane containing Cyanex 301 as carrier. Separation and Purification Technology, 81, 116–123. DOI: 10.1016/j.seppur.2011.07.004.CrossRefGoogle Scholar
  16. Mendiguchía, C., García-Vargas, M., & Moreno, C. (2008). Screening of dissolved heavy metals (Cu, Zn, Mn, Al, Cd, Ni, Pb) in seawater by a liquid-membrane-ICP-MS approach. Analytical and Bioanalytical Chemistry, 391, 773–778. DOI: 10.1007/s00216-008-1907-1.CrossRefGoogle Scholar
  17. Minhas, F. T., Memon, S., & Bhanger, M. I. (2010). Transport of Hg(II) through bulk liquid membrane containing calix[4]arene thioalkyl derivative as a carrier. Desalination, 262, 215–220. DOI: 10.1016/j.desal.2010.06.014.CrossRefGoogle Scholar
  18. Mulinacci, N., Romani, A., Galardi, C., Pinelli, P., Giaccherini, C., & Vincieri, F. F. (2001). Polyphenolic content in olive oil waste waters and related olive samples. Journal of Agricultural and Food Chemistry, 49, 3509–3514. DOI: 10.1021/jf000972q.CrossRefGoogle Scholar
  19. Nezhadali, A., & Rabani, N. (2011). Competitive bulk liquid membrane transport of Co(II), Ni(II), Zn(II), Cd(II), Ag(I), Cu(II), and Mn(II), cations using 2,2′-dithio(bis)benzothiazole as carrier. Chinese Chemical Letters, 22, 88–92. DOI: 10.1016/j.cclet.2010.06.018.CrossRefGoogle Scholar
  20. Norberg, J., Emnéus, J., Jönsson, J. Å., Mathiasson, L., Burestedt, E., Knutsson, M., & Marko-Varga, G. (1997). Online supported liquid membrane-liquid chromatography with a phenol oxidase-based biosensor as a selective detection unit for the determination of phenols in blood plasma. Journal of Chromatography B: Biomedical Sciences and Applications, 701, 39–46. DOI: 10.1016/s0378-4347(97)00348-4.CrossRefGoogle Scholar
  21. Reddy, T. R., Ramkumar, J., Chandramouleeswaran, S., & Reddy, A. V. R. (2010). Selective transport of copper across a bulk liquid membrane using 8-hydroxy quinoline as carrier. Journal of Membrane Science, 351, 11–15. DOI: 10.1016/j.memsci.2010.01.021.CrossRefGoogle Scholar
  22. Reichardt, C., & Welton, T. (2011). Solvents and solvent effects in organic chemistry (4th ed.). Weinheim, Germany: VCH. DOI: 10.1002/9783527632220.Google Scholar
  23. Rydberg, J., Musikas, C., & Choppin, G. R. (1992). Principles and practices of solvent extraction. New York, NY, USA: Marcel Dekker.Google Scholar
  24. San Román, M. F., Bringas, E., Ibañez, R., & Ortiz, I. (2010). Liquid membrane technology: fundamentals and review of its applications. Journal of Chemical Technology and Biotechnology, 85, 2–10. DOI: 10.1002/jctb.2252.CrossRefGoogle Scholar
  25. Shamsipur, M., Davarkhah, R., & Khanchi, A. R. (2010). Facilitated transport of uranium(VI) across a bulk liquid membrane containing thenoyltrifluoroacetone in the presence of crown ethers as synergistic agents. Separation and Purification Technology, 71, 63–69. DOI: 10.1016/j.seppur.2009.11.003.CrossRefGoogle Scholar
  26. Singh, R., Mehta, R., & Kumar, V. (2011). Simultaneous removal of copper, nickel and zinc metal ions using bulk liquid membrane system. Desalination, 272, 170–173. DOI: 10.1016/j.desal.2011.01.009.CrossRefGoogle Scholar
  27. Zafra, A., Juárez, M. J. B., Blanc, R., Navalón, A., González, J., & Vílchez, J. L. (2006). Determination of polyphenolic compounds in wastewater olive oil by gas chromatography-mass spectrometry. Talanta, 70, 213–218. DOI: 10.1016/j.talanta.2005.12.038.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Shahriar Shadabi
    • 1
  • Ali Reza Ghiasvand
    • 1
    • 2
  • Payman Hashemi
    • 1
  1. 1.Department of ChemistryLorestan UniversityKhoramabadIran
  2. 2.Razi Medicinal Herbs Research CenterLorestan University of Medical ScienceKhoramabadIran

Personalised recommendations