Chemical Papers

, Volume 67, Issue 9, pp 1172–1180 | Cite as

Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste

  • Dajana KučićEmail author
  • Nina Kopčić
  • Felicita Briški
Original Paper


The gaseous byproducts produced during the composting of different kinds of solid waste are carbon dioxide (CO2) and ammonia (NH3). CO2 is a greenhouse gas and NH3 is a toxic and corrosive air pollutant so, they must be removed from exhaust gases prior to release into the atmosphere. The purpose of this work was to investigate the sorption of CO2 and NH3, evolved during composting, on zeolite and potting soil. The composting of the mixture of grape waste (GW) and tobacco waste (TW) in the mass ratio GW: TW = 55: 45 (dry mass basis) was carried out under forced aeration (0.645 L min−1 kg−1) in a column reactor (10 L) under adiabatic conditions over 21 days. Adsorption of the gases evolved was carried out in the fixed-bed column reactor (0.166 L). The most important physical-chemical characteristics of the composting mass and adsorbents and the evolved CO2 and NH3 were closely monitored. The highest CO2 and NH3 concentrations were measured at the thermophilic stage and the cooling stage of composting, respectively. The results showed that zeolite and potting soil were good adsorbents for the sorption of CO2 and NH3. The zeolite adsorbed 31 % of the evolved CO2 and the entire concentration of ammonia, whilst the potting soil adsorbed 3 % of CO2 and 49 % of NH3 from the exhaust gases.


co-composting exhaust gases (CO2 and NH3sorption zeolite potting soil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA (1985). Standard methods for the examination of water and wastewater (16th ed.). Washington, DC, USA: American Public Health Association.Google Scholar
  2. Austrian Standards Institute (1986). Austrian standard: Analytical methods and quality control for waste compost. Ö NORM S 2023, Vienna, Austria.Google Scholar
  3. Baquerizo, G., Maestre, J. P., Sakuma, T., Deshusses, M. A., Gamisans, X., Gabriel, D., & Lafuente, J. (2005). A detailed model of a bio?lter for ammonia removal: Model parameters analysis and model validation. Chemical Engineering Journal, 113, 205–214. DOI: 10.1016/j.cej.2005.03.003.CrossRefGoogle Scholar
  4. Bautista, J. M., Kim, H. S., Ahn, D. H., Zhang, R. H., & Oh, Y. S. (2011). Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite. Korean Journal of Chemical Engineering, 28, 189–194. DOI: 10.1007/s11814-010-0312-6.CrossRefGoogle Scholar
  5. Bernai, M. P., Paredes, C., Sánchez-Monedero, M. A., & Cegarra, J., (1998). Maturity and stability parameters of composts prepared with a wide range of organic waste. Bioresource Technology, 63, 91–99. DOI: 10.1016/s0960-8524(97)00084-9.CrossRefGoogle Scholar
  6. Bertran, E., Sort, X., Soliva M., & Trillas, I. (2004). Composting winery waste: sludges and grape stalks. Bioresource Technology, 95, 203–208. DOI: 10.1016/j.biortech.2003.07.012.CrossRefGoogle Scholar
  7. Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., & Hausler, R. (2008). Advances in principal factors influencing carbon dioxide adsorption on zeolite. Science and Technology of Advanced Materials, 9, 013007. DOI: 10.1088/1468-6996/9/1/013007.CrossRefGoogle Scholar
  8. Briški, F., Gomzi, Z., Horgas, N., & Vuković, M. (2003). Aerobic composting of tobacco solid waste. Acta Chimica Slovenica, 50, 715–729.Google Scholar
  9. Briški, F., Kopčić, N., Ćosić, I., Kučić, D., & Vuković, M. (2012). Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chemical Papers, 66, 1103–1110. DOI: 10.2478/s11696-012-0234-3.CrossRefGoogle Scholar
  10. Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2, 796–854. DOI: 10.1002/cssc.200900036.CrossRefGoogle Scholar
  11. de Guardia, A., Mallard, P., Teglia, C., Marin, A., Le Pape, C., Launay, M., Benoist, J. C., & Petiot, C. (2010). Comparison of five organic wastes regarding their behaviour during composting: Part 1, biodegradability, stabilization kinetics and temperature rise. Waste Management, 30, 402–414. DOI: 10.1016/j.wasman.2009.10.019.CrossRefGoogle Scholar
  12. Deng, W. Y., Yan, J. H., Li, X. D., Wang, F., Zhu, X. W., Lu, S. Y., & Cen, K. F. (2009). Emission characteristics of volatile compounds during sludges drying process. Journal of Hazardous Materials, 162, 186–192. DOI: 10.1016/j.jhazmat.2008.05.022.CrossRefGoogle Scholar
  13. Diaz, M. J., Madejón, E., López, F., López, R., & Cabrera, F. (2002). Optimization of the rate vinasse/grape marc for cocomposting process. Process Biochemistry, 37, 1143–1150. DOI: 10.1016/s0032-9592(01)00327-2.CrossRefGoogle Scholar
  14. Farkaš, A., Rožić, M., & Barbarić-Mikočević, Ž. (2005). Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia. Journal of Hazardous Materials, 117, 25–33. DOI: 10.1016/j.jhazmat.2004.05.035.CrossRefGoogle Scholar
  15. Grigatti, M., Cavani, L., & Ciavatta, C. (2011). The evaluation of stability during the composting of different starting materials: Comparison of chemical and biological parameters. Chemosphere, 83, 41–48. DOI: 10.1016/j.chemosphere.2011. 01.010.CrossRefGoogle Scholar
  16. Hao, X. Y., Chang, C., Janzen, H. H., Hill, B. R., & Ormann, T. (2005). Potential nitrogen enrichment of soil and surface water by atmospheric ammonia sorption in intensive livestock production areas. Agriculture, Ecosystems & Environment, 110, 185–194. DOI: 10.1016/j.agee.2005.04.002.CrossRefGoogle Scholar
  17. Haug, R. T. (1993). The practical handbook of composting engineering (Chapter 9, pp. 326–327). Boca Raton, FL, USA: Lewis Publishers.Google Scholar
  18. Heavey, M. (2003). Low-cost treatment of landfill leachate using peat. Waste Management, 23, 447–454. DOI: 10.1016/s0956-053x(03)00064-3.CrossRefGoogle Scholar
  19. Hedström, A. (2001). Ion exchange of ammonium in zeolites: A literature review. Journal of Environmental Engineering, 127, 673–681. DOI: 10.1061/(ASCE)0733-9372(2001)127:8(673).CrossRefGoogle Scholar
  20. Hu, T. J., Zeng, G. M., Huang, D. L., Yu, X. Y., Jiang, X. Y., Dai, F., & Huang, G. H. (2007). Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process. Journal of Hazardous Materials, 141, 736–744. DOI: 10.1016/j.jhazmat.2006.07.027.CrossRefGoogle Scholar
  21. Inglezakis, V. J., & Poulopoulos, S. G. (2006). Adsorption, ion exchange and catalysis design of operations and environmental applications. Amsterdam, The Netherlands: Elsevier.Google Scholar
  22. Kaithwas, A., Prasad, M., Kulshreshtha, A., & Verma, S. (2012). Industrial wastes derived solid adsorbents for CO2 capture: A mini review. Chemical Engineering Research and Design, 90, 1632–1641. DOI: 10.1016/j.cherd.2012.02.011.CrossRefGoogle Scholar
  23. Kaosol, T., & Pongpat, N. (2011). Ammonia gas removal from gas stream by biofiltration using agricultural residue biofilter medias in laboratory-scale biofilter. World Academy of Science, Engineering and Technology, 2011(53), 642–646.Google Scholar
  24. Kolthoff, I. M., & Sandel, E. B. (1951). Inorganic quantitative analysis (pp. 347–352). Zagreb, Croatia: Školska Knjiga. (in Croatian)Google Scholar
  25. Kučić, D., Kopčić, I., Ćosić, I., Vuković, M., & Briški, F. (2011). Determination of ammonia and carbon dioxide in exhaust gases during composting of tobacco waste in closed reactor. In Proceedings of the 3 th International Symposium on Environmental Management — Towards Sustainable Technologies, October 26–28, 2011 (pp. 280–286). Zagreb, Croatia: University of Zagreb.Google Scholar
  26. Kučić, D., Kopčić, N., Jurić, I., Ćosić, I., Vuković, M., & Briški, F. (2012). Sorption of ammonia and carbon dioxide evolved during composting of winery and tobacco waste in reactor system. In J. Markoš (Ed.), Proceedings of the 39th International Conference of Slovak Society of Chemical Engineering, May 21–25, 2012 (pp. 380–386). Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering.Google Scholar
  27. Li, X., Lin, C., Wang, Y., Zhao, M., & Hou, Y. (2010). Clinoptilolite adsorption capability of ammonia in pig farm. Procedia Environmental Sciences, 2, 1598–1612. DOI: 10.1016/j.proenv.2010.10.171.CrossRefGoogle Scholar
  28. Liang, Y., Leonard, J. J., Feddes, J. J. R., & McGill, W. B. (2006). Influence of carbon and buffer amendment on ammonia volatilization in composting. Bioresource Technology, 97, 748–761. DOI: 10.1016/j.biortech.2005.03.041.CrossRefGoogle Scholar
  29. Nakasaki, K., Ohtaki, A., & Takano, H. (2000). Biodegradable plastic reduces ammonia emission during composting. Polymer Degradation and Stability, 70, 185–188. DOI: 10.1016/s0141-3910(00)00104-x.CrossRefGoogle Scholar
  30. Pagans, E., Font, X., & Sánchez, A. (2007a). Coupling composting and biofiltration for ammonia and volatile organic compound removal. Biosystems Engineering, 97, 491–500. DOI: 10.1016/j.biosystemseng.2007.03.035.CrossRefGoogle Scholar
  31. Pagans, E., Font, X., & Sánchez, A. (2007b). Adsorption, absorption, and biological degradation of ammonia in different biofilter organic media. Biotechnology and Bioengineering, 97, 515–525. DOI: 10.1002/bit.21246.CrossRefGoogle Scholar
  32. Paillat, J. M., Robin, P., Hassouna, M., & Leterme, P. (2005). Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmospheric Environment, 39, 6833–6842. DOI: 10.1016/j.atmosenv.2005.07.045.CrossRefGoogle Scholar
  33. Pérez Marín, A. B., Aguilar, M. I., Meseguer, V. F., Ortuño, J. F., Sáez, J., & Lloréns, M. (2009). Biosorption of chromium (III) by orange (Citrus cinenis) waste: Batch and continuous studies. Chemical Engineering Journal, 155, 199–206. DOI: 10.1016/j.cej.2009.07.034.CrossRefGoogle Scholar
  34. Prescott, L. M., Harley, J. P., & Klein, D. A. (1996). Microbiology (3rd ed., pp. 498–502). Chichester, UK: WCB Publishers.Google Scholar
  35. Rodrigues, C. C., de Moraes, D., Jr., Nóbrega, S. W., & Barboza, M. G. (2007). Ammonia adsorption on fixed bed of activated carbon. Bioresource Technology, 98, 886–891. DOI: 10.1016/j.biortech.2006.03.024.CrossRefGoogle Scholar
  36. Rufford, T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J., Diniz da Costa, J. C., & May, E. F. (2012). The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science and Engineering, 94–95, 127–154.Google Scholar
  37. Saithep, N., Dheeranupatana, S., Sumrit, P., Jeerat, S., Boonchalermkit, S., Wongsanoon, J., & Jatisatienr, C. (2009). Composting of tobacco plant waste by manual turning and forced aeration system. Maejo International Journal of Science and Technology, 3, 248–260.Google Scholar
  38. Šály, V., & Kočálka, S. (1996). Dieletric response of natural clinoptilolite type zeolitic material containing silver iodide. Chemical Papers, 50, 328–333.Google Scholar
  39. Sánchez-Monedero, M. A., Roig, A., Paredes, C., & Bernal, M. P. (2001). Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresource Technology, 78, 301–308. DOI: 10.1016/s0960-8524(01)00031-1.CrossRefGoogle Scholar
  40. Sánchez-Monedero, M. A., Serramiá, N., García-Ortiz Civanto, C., Fernández-Hernández, A., & Roig, A. (2010). Greenhouse gas emissions during composting of two-phase olive mill wastes with different agroindustrial by-products. Chemosphere, 81, 18–25. DOI: 10.1016/j.chemosphere.2010.07.022.CrossRefGoogle Scholar
  41. Smet, E., van Langenhove, H., & Maes, K. (2000). Abatement of high concentrated ammonia loaded waste gases in compost biofilters. Water, Air, & Soil Pollution, 119, 177–190. DOI: 10.1023/a:1005186327201.CrossRefGoogle Scholar
  42. Tiquia, S. M., & Tam, N. F. Y. (2000). Fate of nitrogen during composting of chicken litter. Environmental Pollution, 110, 535–541. DOI: 10.1016/s0269-7491(99)00319-x.CrossRefGoogle Scholar
  43. Venglovsky, J., Sasakova, N., Vargova, M., Pacajova, Z., Placha, I., Petrovsky, M., & Harichova, D. (2005). Evolution of temperature and chemical parameters during composting of the pig slurry solid fraction amended with natural zeolite. Bioresource Technology, 96, 181–189. DOI: 10.1016/j.biortech.2004.05.006.CrossRefGoogle Scholar
  44. Wang, S. B., & Peng, Y. L. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 11–24. DOI: 10.1016/j.cej.2009.10.029.CrossRefGoogle Scholar
  45. Xue, N. T., Wang, Q. H., Wu, C. F., Zhang, L. H., & Xie, W. M. (2010). Enhanced removal of NH3 during composting by a biotrickling filter inoculated with nitrifying bacteria. Biochemical Engineering Journal, 51, 86–93. DOI: 10.1016/j.bej.2010.05.007.CrossRefGoogle Scholar
  46. Yasuda, T., Kuroda, K., Fukumoto, Y., Hanajima, D., & Suzuki, K. (2009). Evaluation of full-scale biofilter with rockwoll mixture treating ammonia gas from livestock manure composting. Bioresource Technology, 100, 1568–1572. DOI: 10.1016/j.biortech.2008.09.033.CrossRefGoogle Scholar
  47. Zeng, Y., De Guardia, A., Ziebal, C., De Macedo, F. J., & Dabert, P. (2012). Nitrification and microbiological evolution during aerobic treatment of municipal solid wastes. Bioresource Technology, 110, 144–152. DOI: 10.1016/j.biortech.2012.01.135.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Dajana Kučić
    • 1
    Email author
  • Nina Kopčić
    • 1
  • Felicita Briški
    • 1
  1. 1.Department of Industrial Ecology, Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations