Chemical Papers

, Volume 67, Issue 4, pp 444–455

An efficient method for the preparation of benzyl γ-ketohexanoates

Original Paper


Twenty acid chlorides, 4-(mono/di-benzyloxy)-4-ketobutanoyl chlorides (Ia–XXa) were synthesised by the reaction of monoesters of succinic acid with thionyl chloride. The product thus obtained (4-benzyloxy-4-ketobutanoyl chlorides) was treated with diethylcadmium to convert it into the corresponding keto-esters (Ib–XXb), the mono/di-benzyl-γ-ketohexanoates, with a good yield. All the compounds thus prepared were characterised by physical, spectroscopic (UV-VIS, IR, 1H NMR, 13C NMR), and mass measurements techniques.


γ-ketoesters mono/disubstituted-benzyl alcohols diethylcadmium monoesters of succinic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arends, I. W. C. E., & Sheldon R. A. (2004). Modern oxidation of alcohols using environmentally benign oxidants. In J. E. Bäckvall (Ed.), Modern oxidation methods (pp. 83–118). Weinheim, Germany: Wiley-VCH.Google Scholar
  2. Ballini, R., Barboni, L., Bosica, G., & Fiorini, D. (2002). Onepot synthesis of γ-diketones, γ-keto esters, and conjugated cyclopentenones from nitroalkanes. Synthesis, 18, 2725–2728. DOI: 10.1055/s-2002-35993.CrossRefGoogle Scholar
  3. Bandgar, B. P., Hashmi, A. M., & Pandit, S. S. (2005). Facile and selective transesterification of β-keto esters using NaIO4, KIO4, and anhydrous CaCl2 as inexpensive catalysts under neutral conditions. Journal of the Chinese Chemical Society, 52, 1101–1104.Google Scholar
  4. Bansal, R. K. (1996). Synthetic approaches in organic chemistry. Sudbury, MA, USA: Jones and Bartlett.Google Scholar
  5. Brockman, J. A., Jr., & Fabio, P. F. (1957). Syntheses of 6-ethyl-8-mercaptooctanoic acid and its homologs. Journal of the American Chemical Society, 79, 5027–5029. DOI: 10.1021/ja01575a053.CrossRefGoogle Scholar
  6. Cason, J. (1942). Branched-chain fatty acids. I. Synthesis of 17-methyloctadecanoic acid. Journal of the American Chemical Society, 64, 1106–1110. DOI: 10.1021/ja01257a029.CrossRefGoogle Scholar
  7. Cason, J. (1946). Branched-chain fatty acids. IV. A further study of the preparation of ketones and keto esters by means of orgaocadmium reagents. Journal of the American Chemical Society, 68, 2078–2081. DOI: 10.1021/ja01214a061.CrossRefGoogle Scholar
  8. Cason, J., & Prout, F. S. (1944). Branched-chain fatty acids. II. Syntheses in the C19 and C25 series. Preparation of keto esters. Journal of the American Chemical Society, 66, 46–50. DOI: 10.1021/ja01229a015.CrossRefGoogle Scholar
  9. Cason, J., & Prout, F. S. (1948). Methyl 4-keto-7-methyloctanoate. Organic Syntheses, 28, 75.Google Scholar
  10. Cason, J., Taylor, P. B., & Williams, D. A. (1951). Branchedchain fatty acids. XX. Synthesis of compounds useful for relating melting point to structure. Journal of Organic Chemistry, 16, 1187–1192. DOI: 10.1021/jo50002a002.CrossRefGoogle Scholar
  11. Csende, F. (2002). Some alternative synthetic routes to γ- and δ-oxo acid derivatives. Acta Chimica Slovenica, 49, 663–676.Google Scholar
  12. Csende, F., Szabó, Z., & Stájer, G. (1993). Synthesis and structural study of new saturated isoindol-1-one derivatives. Heterocycles, 36, 1809–1821. DOI: 10.3987/COM-93-6366.CrossRefGoogle Scholar
  13. Dahl, A. C., Fjeldberg, M., & Madsen, J. O. (1999). Baker’s yeast: improving the D-stereoselectivity in reduction of 3-oxo esters. Tetrahedron: Asymmetry, 10, 551–559. DOI: 10.1016/s0957-4166(99)00025-7.CrossRefGoogle Scholar
  14. Forni, A., Moretti, I., Prati, F., & Torre, G. (1994). Stereochemical control in yeast reduction of fluorinated β-diketones. Tetrahedron, 50, 11995–12000. DOI: 10.1016/s0040-4020(01)89310-8.CrossRefGoogle Scholar
  15. Fujisawa, T., Sugimoto, T., & Shimizu, M. (1994). Highly stereocontrolled access to trifluoromethylbenzylic alcohols possessing p-substituents by the bakers’ yeast reduction. Tetrahedron: Asymmetry, 5, 1095–1098. DOI: 10.1016/0957-4166(94)80060-x.CrossRefGoogle Scholar
  16. Hayakawa, R., Nozawa, K., Shimizu, M., & Fujisawa, T. (1998). Control of enantioselectivity in the bakers’ yeast reduction of β-keto ester derivatives in the presence of a sulfur compound. Tetrahedron Letters, 39, 67–70. DOI: 10.1016/s0040-4039(97)10490-7.CrossRefGoogle Scholar
  17. Heiss, C., Laivenieks, M., Zeikus, J. G., & Phillips, R. S. (2001). The stereospecificity of secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus is partially determined by active site water. Journal of the American Chemical Society, 123, 345–346. DOI: 10.1021/ja005575a.CrossRefGoogle Scholar
  18. Hilgenkamp, R., & Zercher, C. K. (2001). Tandem chain extension-homoenolate formation: the formation of α-methylated-γ-keto esters. Organic Letters, 3, 3037–3040. DOI: 10.1021/ol016485t.CrossRefGoogle Scholar
  19. Huang, D., Yan, M., Zhao, W. J., & Shen, Q. (2005). Efficient synthesis of γ-keto esters from enamines and EDA. Synthetic Communications, 35, 745–750. DOI: 10.1081/scc-200050387.CrossRefGoogle Scholar
  20. Hudlicky, M. (1990). Oxidation in organic chemistry. Washington, DC, USA: American Chemical Society.Google Scholar
  21. Iqbal, M., Baloch, I. B., & Baloch, M. K. (2012). Synthesis and structural characterization of novel monoesters of succinic anhydride with aryl alcohols. Chemistry Journal, 2, 12–19.CrossRefGoogle Scholar
  22. Itoh, N., Matsuda, M., Mabuchi, M., Dairi, T., & Wang, J. (2002). Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. European Journal of Biochemistry, 269, 2394–2402. DOI: 10.1046/j.1432-1033.2002.02899.x.CrossRefGoogle Scholar
  23. Izquierdo, J., Rodriguez, S., & Gonzalez, F. V. (2011). Regioselective ring opening and isomerization reactions of 3,4-epoxyesters catalyzed by boron trifluoride. Organic Letters, 13, 3856–3859. DOI: 10.1021/ol201378w.CrossRefGoogle Scholar
  24. Kataoka, M., Yamamoto, K., Kawabata, H., Wada, M., Kita, K., Yanase, H., & Shimizu, S. (1999). Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Applied Microbiology and Biotechnology, 51, 486–490. DOI: 10.1007/s002530051421.CrossRefGoogle Scholar
  25. Kashima, C., Shirahata, Y., & Tsukamoto, Y. (2001). Preparation of β-substituted γ-keto esters by the Grignard reaction on N-acylpyrazoles. Heterocycles, 54, 309–317. DOI: 10.3987/com-00-s(I)37.CrossRefGoogle Scholar
  26. Kizaki, N., Yasohara, Y., Hasegawa, J., Wada, M., Kataoka, M., & Shimizu, S. (2001). Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Applied Microbiology and Biotechnology, 55, 590–595. DOI: 10.1007/s002530100599.CrossRefGoogle Scholar
  27. Larock, R. C. (1999). Comprehensive organic transformations (2nd ed.). New York, NY, USA: Wiley-VCH.Google Scholar
  28. Nakamura, K., Yamanaka, R., Matsuda, T., & Harada, T. (2003). Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron: Asymmetry, 14, 2659–2681. DOI: 10.1016/s0957-4166(03)00526-3.CrossRefGoogle Scholar
  29. Poliakoff, M., Fitzpatrick, J. M., Farren, T. R., & Anastas, P. T. (2002). Green chemistry: science and politics of change. Science, 297, 807–810. DOI: 10.1126/science.297.5582.807.CrossRefGoogle Scholar
  30. Roberts, J. D., & Caserio, M. C. (1964). Basic principles of organic chemistry. Menolo Park, CA, USA: W. A. Benjamin Inc.Google Scholar
  31. Ronsheim, M. D., Hilgenkamp, R. K., & Zercher, C. K. (2002). Formation of γ-keto esters from β-keto esters: Methyl 5,5-dimethyl-4-oxo-hexanoate. Organic Syntheses, 79, 146.Google Scholar
  32. Von Rudloff, E. (1958). Synthesis of some hexanediols. Canadian Journal of Chemistry, 36, 486–491. DOI: 10.1139/v58-069.CrossRefGoogle Scholar
  33. Shafiee, A., Motamedi, H., & King, A. (1998). Purification, characterization and immobilization of an NADAPH-dependent enzyme involved in the chiral specific reduction of the keto ester M, an intermediate in the synthesis of an antiasthma drug, Montelukast, from Microbacterium campoquemadoensis (MB5614). Applied Microbiology and Biotechnology, 49, 709–717. DOI: 10.1007/s002530051236.CrossRefGoogle Scholar
  34. Stájer, G., Csende, F., Bernáth, G., Sohár, P., & Szúnyog, J. (1994). Preparation and steric structure of 3(2H)-pyridazinones and 1,2-oxazin-6-ones fused with three-to sixmembered saturated carbocycles or norbornane skeleton. Monatshefte für Chemie/Chemical Monthly, 125, 933–944. DOI: 10.1007/bf00812708.CrossRefGoogle Scholar
  35. Taylor, H. T. (1958). Preparation of unsaturated keto-acids from the interaction of ethylene and acid anhydrides. Journal of the Chemical Society (Resumed), 1958, 3922–3924. DOI: 10.1039/jr9580003922.Google Scholar
  36. Tojo, G., & Fernández, M. (2006). Oxidation of alcohols to aldehydes and ketones. New York, NY, USA: Springer.Google Scholar
  37. Wang, W., Xu, B., & Hammond, G. B. (2009). Efficient synthesis of γ-keto esters through neighboring carbonyl groupassisted regioselective hydration of 3-alkynoates. Journal of Organic Chemistry, 74, 1640–1643. DOI: 10.1021/jo802450n.CrossRefGoogle Scholar
  38. Wehrli, P. A., & Chu, V. (1973). Novel synthesis of γ-keto esters. Journal of Organic Chemistry, 38, 3436–3436. DOI: 10.1021/jo00959a053.CrossRefGoogle Scholar
  39. Wehrli, P. A., & Chu, V. (1978). γ-Ketoesters from aldehydes via diethyl acylsuccinates: Ethyl 4-oxohexanoate. Organic Syntheses, 58, 79.Google Scholar
  40. Williams, D.B.G., Blann, K., & Holzapfel, C.W. (2001). Aryl γ-ketoesters as precursors for γ-butyrolactones in samarium(II) iodide-mediated reactions. Synthetic Communications, 31, 203–209. DOI: 10.1081/scc-100000200.CrossRefGoogle Scholar
  41. Williams, D. B. G., Blann, K., Caddy, J., & Holzapfel, C. W. (2002). Aryl γ-ketoesters as precursors for γ-butyrolactone dimers in samarium(II) iodide-mediated reactions. Synthetic Communications, 32, 3755–3762. DOI: 10.1081/scc-120015393.CrossRefGoogle Scholar
  42. Yamamoto, H., Kimoto, N., Matsuyama, A., & Kobayashi, Y. (2002a). Purification and properties of a carbonyl reductase useful for production of ethyl (S)-4-chloro-3-hydroxybutanoate from Kluyveromyces lactis. Bioscience, Biotechnology, and Biochemistry, 66, 1775–1778. DOI: 10.1271/bbb.66.1775.CrossRefGoogle Scholar
  43. Yamamoto, H., Matsuyama, A., & Kobayashi, Y. (2002b). Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Bioscience, Biotechnology, and Biochemistry, 66, 481–483. DOI: 10.1271/bbb.66.481.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Muhammad Iqbal
    • 1
  • Imam B. Baloch
    • 1
  • Musa K. Baloch
    • 1
  1. 1.Department of ChemistryGomal UniversityDera Ismail KhanPakistan

Personalised recommendations