Chemical Papers

, Volume 67, Issue 4, pp 380–388

Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions

  • Katarzyna Staszak
  • Zofia Karaś
  • Karolina Jaworska
Original Paper


A comparison of polymeric and ceramic membranes in the ultrafiltration process was studied and presented. This study was conducted on the separation of cadmium(II) ions, with particular reference to parameters such as hydrodynamic permeability coefficient, membrane fouling, amount of surfactant in the permeate, efficiency, and effectiveness of the process. The effect of ionic (SDS) and non-ionic (Rofam 10) surfactants or their mixture was investigated. The hydrodynamic permeability coefficient of the ceramic membrane was found to be much lower in comparison to those of the polymeric ones (1.69 × 10−7 m3 h−1 m−2 Pa−1, 5.66 × 10−7 m3 h−1 m−2 Pa−1, and 9.26 × 10−7 m3 h−1 m−2 Pa−1 for ceramic, CA, and PVDF, respectively). However, filtration of the surfactants solutions did not cause permanent blocking of pores and the surface of the ceramic membrane in contrast to the polymeric ones. No significant differences in surfactants permeation through the membranes tested were observed. Concentration of the surfactant in the permeate was lower than 1 CMC for the Rofam 10 solution and exceeded the CMC by about 40 % for the SDS solution. Better separation properties of polymer membranes for the separation of cadmium(II) ions from micellar systems were identified.


ultrafiltration ceramic and polymeric membrane cadmium(II) ion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barredo-Damas, S., Alcaina-Miranda, M. I., Bes-Piá, A., Iborra-Clar, M. I., Iborra-Clar, A., & Mendoza-Roca, J. A. (2010). Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination, 250, 623–628. DOI: 10.1016/j.desal.2009.09.037.CrossRefGoogle Scholar
  2. Basile, A., & Gallucci, F. (Eds.) (2011). Membranes for membrane reactors: Preparation, optimization and selection. Chichester, UK: Wiley.CrossRefGoogle Scholar
  3. Cañizares, P., Pérez, A., Camarillo, R., & Mazarro, R. (2008). Simultaneous recovery of cadmium and lead from aqueous effluents by a semi-continuous laboratory-scale polymer enhanced ultrafiltration process. Journal of Membrane Science, 320, 520–527. DOI: 10.1016/j.memsci.2008.04.043.CrossRefGoogle Scholar
  4. Chen, H. L., & Juang, R. S. (2008). Extraction of surfactin from fermentation broth with n-hexane in microporous PVDF hollow fibers: Significance of membrane adsorption. Journal of Membrane Science, 325, 599–604. DOI: 10.1016/j.memsci.2008.08.017.CrossRefGoogle Scholar
  5. Dunn, R. O., Jr., Scamehorn, J. F., & Christian, S. D. (1985). Use the micellar-enhanced ultrafiltration to remove dissolved organics from aqueous wastes. Separation Science and Technology, 20, 257–284. DOI: 10.1080/01496398508060679.CrossRefGoogle Scholar
  6. Eichler, W. (1989). Trucizny w naszym pożywieniu (Poisons in our food). Warszawa: Państwowy Zakład Wydawnictw Lekarskich.Google Scholar
  7. Elimelech, M., Zhu, X. H., Childress, A. E., & Hong, S. K. (1997). Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. Journal of Membrane Science, 127, 101–109. DOI: 10.1016/s0376-7388(96)00351-1.CrossRefGoogle Scholar
  8. Ennigrou, D. J., Gzara, L., Ben Romdhane, M. R., & Dhahbi, M. (2009). Cadmium removal from aqueous solutions by polyelectrolyte enhanced ultrafiltration. Desalination, 246, 363–369. DOI: 10.1016/j.desal.2008.04.053.CrossRefGoogle Scholar
  9. Huang, J. H., Zeng, G. M., Fang, Y. Y., Qu, Y. H., & Li, X. (2009). Removal of cadmium ions using micellarenhanced ultrafiltration with mixed anionic-nonionic surfactants. Journal of Membrane Science, 326, 303–309. DOI: 10.1016/j.memsci.2008.10.013.CrossRefGoogle Scholar
  10. Jönsson, C., & Jönsson, A. S. (1995). Influence of the membrane material on the adsorptive fouling of ultrafiltration membranes. Journal of Membrane Science, 108, 79–87. DOI: 10.1016/0376-7388(95)00144-x.CrossRefGoogle Scholar
  11. Juang, R. S., Xu, Y. Y., & Chen, C. L. (2003). Separation and removal of metal ions from dilute solutions using micellarenhanced ultrafiltration. Journal of Membrane Science, 218, 257–267. DOI: 10.1016/s0376-7388(03)00183-2.CrossRefGoogle Scholar
  12. Keurentjes, J. F. T., Harbrecht, J. G., Brinkman, D., Hanemaaijer, J. H., Cohen Stuart, M. A., & van’t Riet, K. (1989). Hydrophobicity measurements of microfiltration and ultrafiltration membranes. Journal of Membrane Science, 47, 333–344. DOI: 10.1016/s0376-7388(00)83084-7.CrossRefGoogle Scholar
  13. Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83–98. DOI: 10.1016/j.cej.2006.01.015.CrossRefGoogle Scholar
  14. Li, X., Zeng, G. M., Huang, J.H., Zhang, C., Fang, Y.Y., Qu, Y. H., Luo, F., Lin, D., & Liu, H. L. (2009). Recovery and reuse of surfactant SDS from a MEUF retentate containing Cd2+ or Zn2+ by ultrafiltration. Journal of Membrane Science, 337, 92–97. DOI: 10.1016/j.memsci.2009.03.030.CrossRefGoogle Scholar
  15. Palencia, M., Rivas, B. L., & Pereira, E. (2009). Metal ion recovery by polymer-enhanced ultrafiltration using poly(vinyl sulfonic acid): Fouling description and membrane-metal ion interaction. Journal of Membrane Science, 345, 191–200. DOI: 10.1016/j.memsci.2009.08.044.CrossRefGoogle Scholar
  16. Park, H. S., & Choi, H. C. (2011). As(III) removal by hybrid reactive membrane process combined with ozonation. Water Research, 45, 1933–1940. DOI: 10.1016/j.watres.2010.12.024.CrossRefGoogle Scholar
  17. Rivas, B. L., Aguirre, M. C., & Pereira, E. (2007). Cationic water-soluble polymers with the ability to remove arsenate through an ultrafiltration technique. Journal of Applied Polymer Science, 106, 89–94. DOI: 10.1002/app.26499.CrossRefGoogle Scholar
  18. Romano Espinosa, D. C., Moura Bernardes, A., & Soares Tenório, J. A. (2004). An overview on the current processes for recycling of batteries. Journal of Power Sources, 135, 311–319. DOI: 10.1016/j.jpowsour.2004.03.083.CrossRefGoogle Scholar
  19. Sadegh Safarzadeh, M., Bafghi, M. S., Moradkhani, D., & Ojaghi Ilkhchi, M. (2007). A review on hydrometallurgical extraction and recovery of cadmium from various resources. Minerals Engineering, 20, 211–220. DOI: 10.1016/j.mineng.2006.07.001.CrossRefGoogle Scholar
  20. Scamehorn, J. F., Ellington, R. T., Christian, S. D., Penney, B. W., Dunn, R. O., & Bhat, S. N. (1986). Removal of multivalent metal cations from water using micellar-enhanced ultrafiltration. AIChE Symposium Series, 82(250), 48–58.Google Scholar
  21. Seymour, W. B. (1940). The preparation of cellophane membranes of graded permeability. The Journal of Biological Chemistry, 134, 701–707.Google Scholar
  22. Staszak, K., Wieszczycka, K., & Burmistrzak, P. (2011). Removal of cadmium(II) ions from chloride solutions by Cyanex 301 and Cyanex 302. Separation Science and Technology, 46, 1495–1502. DOI: 10.1080/01496395.2011.563258.CrossRefGoogle Scholar
  23. Staszak, K., Konopczyńska, B., & Prochaska, K. (2012). Micellar enhanced ultrafiltration as a method of removal of chromium(III) ions from aqueous solutions. Separation Science and Technology, 47, 802–810. DOI: 10.1080/01496395.2011.644613.CrossRefGoogle Scholar
  24. Tounissou, P., Hebrant, M., & Tondre, C. (1996). On the behavior of micellar solutions in tangential ultrafiltration using mineral membranes. Journal of Colloid and Interface Science, 183, 491–497. DOI: 10.1006/jcis.1996.0572.CrossRefGoogle Scholar
  25. Yenphan, P., Chanachai, A., & Jiraratananon, R. (2010). Experimental study on micellar-enhanced ultrafiltration (MEUF) of aqueous solution and wastewater containing lead ion with mixed surfactants. Desalination, 253, 30–37. DOI: 10.1016/j.desal.2009.11.040.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Katarzyna Staszak
    • 1
  • Zofia Karaś
    • 1
  • Karolina Jaworska
    • 1
  1. 1.Institute of Technology and Chemical EngineeringPoznan University of TechnologyPoznańPoland

Personalised recommendations