Chemical Papers

, Volume 67, Issue 3, pp 305–312 | Cite as

Prediction of anti-tuberculosis activity of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dione derivatives

  • Peter Nemeček
  • Ján Mocák
  • Jozef Lehotay
  • Karel Waisser
Original Paper

Abstract

Correlation analysis and, in particular, artificial neural networks (ANN) were used to predict the anti-mycobacterial activity of substituted 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-diones (PBODs) by quantitative structure — activity relationship (QSAR) calculations. Initially, sixty-four derivatives were synthesised and biologically tested; ten further derivatives were proposed for future synthesis on the basis of the prediction results. The biological activity was originally expressed by minimum inhibitory concentration (MIC) against Mycobacterium tuberculosis; however, its transformed pMIC form was found to be more informative. Theoretical molecular descriptors of several types were selected to establish a primary drug model of the species which was expected to exhibit a substantial anti-mycobacterial effect. Lipophilicity and solubility indices, several basic molecular properties, quantum chemistry quantities as well as 1H and 13C NMR chemical shifts, were employed as the descriptors, enabling a very successful prediction of the pMIC values. The utilisation of in silico variables and simulated NMR data is highly advantageous in the first phase of the drug design, as they permit prediction of the compounds with a high expected activity, minimising the risk of synthesising less active species. The MIC values predicted at less than 4 μmol L−1 for six of the ten compounds suggested for further synthesis are better than the best value for the original set of compounds.

Keywords

3-phenyl-2H-1,3-benzoxazine-2,4(3H)-diones Mycobacterium tuberculosis minimum inhibitory concentration QSAR artificial neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACD/Labs (2003). ACD/PhysChem, Version 7.0 [computer software]. Toronto, Canada: Advanced Chemistry Development.Google Scholar
  2. Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, UK: Oxford University Press.Google Scholar
  3. Corbett, E. L., Churchyard, G. J., Hay, M., Herselman, P., Clayton, T., Williams, B., Hayes, R., Mulder, D.,& De Cock, K. M. (1999). The impact of HIV infection on Mycobacterium kansasii disease in South African gold miners. American Journal of Respiratory and Critical Care Medicine, 160, 10–14.Google Scholar
  4. Devillers, J. (Ed.) (1996). Neural networks in QSAR and drug design (Series: Principles of QSAR and drug design). London, UK: Academic Press.Google Scholar
  5. Dewar, M. J. S., Zoebisch, E.G., Healy, E. F.,& Stewart, J. J. P. (1985). Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107, 3902–3909. DOI: 10.1021/ja00299a024.CrossRefGoogle Scholar
  6. Ďurčeková, J., Mocák, J., Lehotay, J., Čižmárik, J., & Boronová, K. (2010). Chemometrical study of the anaesthetical activity of alkoxyphenylcarbamic acid esters. Die Pharmazie — An International Journal of Pharmaceutical Sciences, 65, 169–174. DOI: 10.1691/ph.2010.9691.Google Scholar
  7. Ďurčeková, J., Mocák, J., Boronová, K.,& Balla, J. (2011). Effect of the statin therapy on biochemical laboratory tests—A chemometrics study. Journal of Pharmaceutical and Biomedical Analysis, 54, 141–147. DOI: 10.1016/j.jpba.2010. 07.047.CrossRefGoogle Scholar
  8. Ďurčeková, T., Boronová, K., Mocák, J., Lehotay, J.,& Čižmárik, J. (2012). QQSRR models for potential local anaesthetic drugs using high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 59, 209–216. DOI: 10.1016/j.jpba.2011.09.035.CrossRefGoogle Scholar
  9. El-Sadr, W. M., Burman, W. J., Grant, L. B., Matts, J. P., Hafner, R., Crane, L., Zeh, D., Gallagher, B., Mannheimer, S. B., Martinez, A.,& Gordin, F. (2000). Discontinuation of prophylaxis against Mycobacterium avium complex disease in HIV-infected patients who have a response to antiretroviral therapy. The New England Journal of Medicine, 342, 1085–1092. DOI: 10.1056/nejm200004133421503.CrossRefGoogle Scholar
  10. Frieden, T. R., Sterling, T. R., Munsiff, S. S., Watt, C. J.,& Dye, C. (2003). Tuberculosis. Lancet, 362, 887–899. DOI: 10.1016/s0140-6736(03)14333-4.CrossRefGoogle Scholar
  11. Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268. DOI: 10.2307/2532051.CrossRefGoogle Scholar
  12. Marras, T. K., Morris, A., Gonzalez, L. C.,& Daley, C. L. (2004). Mortality prediction in pulmonary Mycobacterium kansasii infection and human immunodeficiency virus. American Journal of Respiratory and Critical Care Medicine, 170, 793–798.CrossRefGoogle Scholar
  13. Mitha, M., Naicker, P.,& Taljaard, J. (2011). Cutaneous Mycobacterium kansasii infection in a patient with AIDS post initiation of antiretroviral therapy. The Journal of Infection in Developing Countries, 5, 553–555.CrossRefGoogle Scholar
  14. Mohan Raju, M., Srivastava, R. K., Bisht, D. C. S., Sharma, H. C., & Kumar, A. (2011). Development of artificial neuralnetwork-based models for the simulation of spring discharge. Advances in Artificial Intelligence, 2011, 686258. DOI: 10.1155/2011/686258.Google Scholar
  15. Myers, J. L., & Well, A. D. (2003). Research design and statistical analysis (2nd ed.). Mahwah, NJ, USA: Lawrence Erlbaum Associates.Google Scholar
  16. Nemeček, P., Ďurčekovák, J., Waisser, K., & Lehotay, J. (2008). Utilization of artificial neural networks for prediction of biological activity in novel QSAR approach. In P. Glavič, & D. Brodnjak-Vončina (Eds.), Proceedings of the Slovenian Chemical Days, September 25–26, 2008. Maribor, Slovenia: Slovensko Kemijsko Družstvo.Google Scholar
  17. Nemeček, P., Ďurčeková, T., Mocák, J.,& Waisser, K. (2009). Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction. Chemical Papers, 63, 84–91. DOI: 10.2478/s11696-008-0089-9.CrossRefGoogle Scholar
  18. Niculescu, S. P. (2003). Artificial neural networks and genetic algorithms in QSAR. Journal of Molecular Structure (THEOCHEM), 622, 71–83. DOI: 10.1016/s0166-1280(02) 00619-x.CrossRefGoogle Scholar
  19. Patterson, D.W. (1996). Artificial neural networks: Theory and applications (Prentice Hall series in advanced communications). Singapore: Prentice Hall.Google Scholar
  20. Petrlíková, E., Waisser, K., DoleŽal, R., Holy, P., Gregor, J., Kuneš, J.,& Kaustová, J. (2011). Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6. Chemical Papers, 65, 352–366. DOI: 10.2478/s11696-011-0020-7.CrossRefGoogle Scholar
  21. Shepherd, A. J. (1997). Second-order methods for neural networks: Fast and reliable training methods for multi-layer perceptrons (Series: Perspectives in neural computing). New York, NY, USA: Springer.Google Scholar
  22. StatSoft (1984). STATISTICA, Version 7.0 [computer software]. Tulsa, OK, USA: StatSoft.Google Scholar
  23. Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V. A., Radchenko, E.V., Zefirov, N. S., Makarenko, A. S., Tanchuk, V. Y., & Prokopenko, V. V. (2005). Virtual computational chemistry laboratory — design and description. Journal of Computer-Aided Molecular Design, 19, 453–463. DOI: 10.1007/s10822-005-8694-y.CrossRefGoogle Scholar
  24. Tomioka, H.,& Namba, K. (2006). Development of antituberculous drugs: Current status and future prospects. Kekkaku, 81, 753–774.Google Scholar
  25. VCCLAB (2005). Virtual computational chemistry laboratory. Retrieved from http://www.vcclab.org
  26. Waisser, K., Kubicová, L., Klimešová, Z. (1993). New groups of potential antituberculotics: 3-aryl-2H,4H-benz[e][1,3]oxazine-2,4-diones. Comparison of the Topliss approach with regression analysis. Collection of Czechoslovak Chemical Communications, 58, 2977–2982. DOI: 10.1135/cccc19932977.CrossRefGoogle Scholar
  27. Waisser, K., Hladuvková, J., Gregor, J., Rada, T., Kubicová, L., Klimešová, V., & Kaustová, J. (1998). Relationships between the chemical structure of antimycobacterial substances and their activity against atypical strains. Part 14: 3-aryl-6,8-dihalogeno-2H-1,3-benzoxazine-2,4(3H)-diones. Archiv der Pharmazie, 331, 3–6. DOI: 10.1002/(SICI)1521-4184(199801) 331:1〈3::AID-ARDP3〉3.0.CO;2-2.CrossRefGoogle Scholar
  28. Waisser, K., Macháček, M., Dostál, H., Gregor, J., Kubicová, L., Klimešovš, J., Palát, K., Jr., Hladůvkov, J., Kaustová, J.,& Möllmann, U. (1999). Relationships between the chemical structure of substances and their antimycobacterial activity against atypical strains. Part 18. 3-Phenyl-2H-1,3-benzoxazine-2,4(3H)-diones and isosteric 3-phenylquinazoline-2,4(lH,3H)-diones. Collection of Czechoslovak Chemical Communications, 64, 1902–1924. DOI: 10.1135/cccc19991902.CrossRefGoogle Scholar
  29. Waisser, K., Hladůvková, J., Holy, P., Macháčmk, M., Karajannis, P., Kubicová, L., Klimešová, V., Kuneš, J., & Kaustová, J. (2001). 2H-1,3-Benzoxazine-2,4(3H)-diones substituted in position 6 as antimycobacterial agents. Chemical Papers, 55, 323–334.Google Scholar
  30. Waisser, K., Bureš, O., Holy, P., Kuneš, J., Oswald, R., Jirásková, L., Pour, M., Klimešovát, K., Jr., Kaustová, J., Dahse, H. M.,& Möllmann, U. (2003). Antimycobacterial 3-aryl-2H-1,3-benzoxazine-2,4(3H)-diones. Pharmazie, 58, 83–94. DOI: 10.1002/chin.200324133.Google Scholar
  31. Waisser, K., Matyk, J., Divišováková, P., Kuneš, J., Klimešová, J., Möllmann, U., Dahse, H. M.,& Miko, M. (2006). The oriented development of antituberculotics: Salicylanilides. Archiv der Pharmazie, 339, 616–620. DOI: 10.1002/ardp.200600093.CrossRefGoogle Scholar
  32. Waisser, K., Matyk, J., Kuneš, J., Doležal, R., Kaustová, J.,& Dahse, H. M. (2008). Highly active potential antituberculotics: 3-(4-Alkylphenyl)-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-(4-alkylphenyl)-2H-1,3-benzoxazine-2,4(3H)-dihiones substituted in ring-B by halogen. Archiv der Pharmazie, 341, 800–803. DOI: 10.1002/ardp.200800004.CrossRefGoogle Scholar
  33. Zupan, J., & Gasteiger, J. (1999). Neural networks in chemistry and drug design (2nd ed.). Weinheim, Germany: Wiley.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Peter Nemeček
    • 1
  • Ján Mocák
    • 1
  • Jozef Lehotay
    • 1
  • Karel Waisser
    • 2
  1. 1.Department of ChemistryUniversity of Ss. Cyril and MethodiusTrnavaSlovakia
  2. 2.Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic

Personalised recommendations