Chemical Papers

, Volume 67, Issue 4, pp 437–443

Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate

Original Paper
  • 259 Downloads

Abstract

An efficient method has been developed for the synthesis of a novel β-keto ester-containing pyranoquinoline compound, i.e., ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate. The method entails a two-step synthesis. The first step involves the Williamson-type reaction of ethyl 2-bromomethyl-3-quinoline-3-carboxylate with ethyl hydroxyacetate in anhydrous benzene to afford the intermediate ethyl 2-[(2-ethoxy-2-oxoethoxy)methyl]quinoline-3-carboxylate. The second step includes the Dieckmann condensation reaction of the resulting intermediate in the presence of sodium ethoxide in anhydrous toluene to afford the desired pyranoquinoline containing β-keto ester moiety. Keto-enol tautomerism of the compound thus obtained was investigated by spectroscopic methods.

Keywords

pyranoquinoline β-keto ester Williamson-type reaction ethyl hydroxyacetate Dieckmann condensation keto-enol tautomerism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adepu, R., Rambabu, D., Prasad, B., Meda, C. L. T., Kandale, A., Krishna, G. R., Reddy, C. M., Chennuru, L. N., Parsa, K. V. L., & Pal, M. (2012). Novel thieno[2,3-d]pyrimidines: their design, synthesis, crystal structure analysis and pharmacological evaluation. Organic & Biomolecular Chemistry, 10, 5554–5569. DOI: 10.1039/c2ob25420d.CrossRefGoogle Scholar
  2. Allegretti, P. E., Schiavoni, M. M., Di Loreto, H. E., Furlong, J. J. P., & Della Védova, C. O. (2001). Separation of keto-enol tautomers in β-ketoesters: a gas chromatography-mass spectrometric study. Journal of Molecular Structure, 560, 327–335. DOI: 10.1016/s0022-2860(00)00773-0.CrossRefGoogle Scholar
  3. Balamurugan, K., Jeyachandran, V., Perumal, S., Manjashetty, T. H., Yogeeswari, P., & Sriram, D. (2010). A microwaveassisted, facile, regioselective Friedländer synthesis and antitubercular evaluation of 2,9-diaryl-2,3-dihydrothieno-[3,2-b]quinolines. European Journal of Medicinal Chemistry, 45, 682–688. DOI: 10.1016/j.ejmech.2009.11.011.CrossRefGoogle Scholar
  4. Bandgar, B. P., Pandit, S. S., & Sadavarte, V. S. (2001). Montmorillonite K-10 catalyzed synthesis of β-keto esters: condensation of ethyl diazoacetate with aldehydes under mild conditions. Green Chemistry, 3, 247–249. DOI: 10.1039/b104116a.CrossRefGoogle Scholar
  5. Chandra, A., Singh, B., Khanna, R. S., & Singh, R. M. (2009). Copper-free palladium-catalyzed Sonogashira coupling-annulation: Efficient one-pot synthesis of functionalized pyrano [4,3-b]quinolines from 2-chloro-3-formylquinolines. The Journal of Organic Chemistry, 74, 5664–5666. DOI: 10.1021/jo900606j.CrossRefGoogle Scholar
  6. Chen, I. S., Tsai, I. W., Teng, C. M., Chen, J. J., Chang, Y. L., Ko, F. N., Lu, M. C., & Pezzuto, J. M. (1997). Pyranoquinoline alkaloids from Zanthoxylum simulans. Phytochemistry, 46, 525–529. DOI: 10.1016/s0031-9422(97)00280-x.CrossRefGoogle Scholar
  7. Cimanga, K., De Bruyne, T., Pieters, L., & Vlietinck, A. J. (1997). In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. Journal of Natural Products, 60, 688–691. DOI: 10.1021/np9605246.CrossRefGoogle Scholar
  8. Cui, H. F., Dong, K. Y., Nie, J., Zheng, Y., & Ma, J. A. (2010). Lewis acid-catalyzed one-pot sequential reaction for the synthesis of α-halogenated β-keto esters. Tetrahedron Letters, 51, 2374–2377. DOI: 10.1016/j.tetlet.2010.02.158.CrossRefGoogle Scholar
  9. Cui, L. Q., Dong, Z. L., Liu, K., & Zhang, C. (2011). Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group. Organic Letters, 13, 6488–6491. DOI: 10.1021/ol202777h.CrossRefGoogle Scholar
  10. Dolle, R. E., & Nelson, K. H., Jr. (1999). Comprehensive survey of combinatorial library synthesis: 1998. Journal of Combinatorial Chemistry, 1, 235–282. DOI: 10.1021/cc9900192.CrossRefGoogle Scholar
  11. Dudley, M. E., Morshed, M. M., Brennan, C. L., Islam, M. S., Ahmad, M. S., Atuu, M. R., Branstetter, B., & Hossain, M. M. (2004). Acid-catalyzed reactions of aromatic aldehydes with ethyl diazoacetate: An investigation on the synthesis of 3-hydroxy-2-arylacrylic acid ethyl esters. The Journal of Organic Chemistry, 69, 7599–7608. DOI: 10.1021/jo0489418.CrossRefGoogle Scholar
  12. Faber, K., Stuckler, H., & Kappe, T. (1984). Non-steroidal antiinflammatory agents. 1. Synthesis of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl alkanoic acids by the Wittig reaction of quinisatines. Journal of Heterocyclic Chemistry, 21, 1177–1181. DOI: 10.1002/jhet.5570210450.CrossRefGoogle Scholar
  13. Gao, W., Zhang, C., Li, Y., & Jiang, Y. (2009). Effective preparation and fluorescent properties of novel naphthooxepinoquinolinones and naphthoacridinediones. Chinese Journal of Organic Chemistry, 29, 1423–1428.Google Scholar
  14. Gao, W., Zhang, C., & Li, Y. (2010). A novel one-pot three-step synthesis of 2-(1-benzofuran-2-yl)quinoline-3-carboxylic acid derivatives. Journal of the Brazilian Chemical Society, 21, 806–812. DOI: 10.1590/s0103-50532010000500007.CrossRefGoogle Scholar
  15. Gao, W., Liu, J., Jiang, Y., & Li, Y. (2011). First synthesis of 2-(benzofuran-2-yl)-6,7-methylene dioxyquinoline-3-carboxylic acid derivatives. Beilstein Journal of Organic Chemistry, 7, 210–217. DOI: 10.3762/bjoc.7.28.CrossRefGoogle Scholar
  16. Gao, W., Jiang, Y., Li, Y., Li, F., & Yan, Y. (2012). A novel and facile synthesis of 2-(benzofuran-2-yl)benzo[h]quinoline-3-carboxylic acid derivatives. Chinese Journal of Chemistry, 30, 822–826. DOI: 10.1002/cjoc.201100389.CrossRefGoogle Scholar
  17. Ghosh, S., Nandakumar, M. V., Krautscheid, H., & Schneider, C. (2010). Copper-bipyridine-catalyzed enantioselective α-amination of β-keto esters. Tetrahedron Letters, 51, 1860–1862. DOI: 10.1016/j.tetlet.2010.02.007.CrossRefGoogle Scholar
  18. Gould, K. J., Manners, C. N., Payling, D. W., Suschitzky, J. L., & Wells, E. (1988). Predictive structure-activity relationships in a series of pyranoquinoline derivatives. A new primate model for the identification of antiallergic activity. Journal of Medicinal Chemistry, 31, 1445–1453. DOI: 10.1021/jm00402a033.CrossRefGoogle Scholar
  19. Hayashi, Y., Toyoshima, M., Gotoh, H., & Ishikawa, H. (2009). Diphenylprolinol silyl ether catalysis in an asymmetric formal carbo [3 + 3] cycloaddition reaction via a domino Michael/Knoevenagel condensation. Organic Letters, 11, 45–48. DOI: 10.1021/ol802330h.CrossRefGoogle Scholar
  20. Iglesias, E. (2004). Application of organized microstructures to study keto-enol equilibrium of β-dicarbonyl compounds. Current Organic Chemistry, 8, 1–24. DOI: 10.2174/1385272043486124.CrossRefGoogle Scholar
  21. Jios, J. L., & Duddeck, H. (2000). 17O NMR spectroscopy of 1-(2-hydroxyphenyl)-3-naphthylpropane-1,3-diones. Influences of keto-enol tautomerism and substituents. Magnetic Resonance in Chemistry, 38, 512–514. DOI: 10.1002/1097-458X(200007)38:7〈512::AID-MRC664〉3.0.CO;2-Z.CrossRefGoogle Scholar
  22. Jonckers, T. H. M., van Miert, S., Cimanga, K., Bailly, C., Colson, P., De Pauw-Gillet, M. C., van den Heuvel, H., Claeys, M., Lemière, F., Esmans, E. L., Rozenski, J., Quirijnen, L., Maes, L., Dommisse, R., Lemière, G. L. F., Vlietinck, A., & Pieters, L. (2002). Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new Neocryptolepine derivatives. Journal of Medicinal Chemistry, 45, 3497–3508. DOI: 10.1021/jm011102i.CrossRefGoogle Scholar
  23. Kalita, P. K., Baruah, B., & Bhuyan, P. J. (2006). Synthesis of novel pyrano[2,3-b]quinolines from simple acetanilides via intramolecular 1,3-dipolar cycloaddition. Tetrahedron Letters, 47, 7779–7782. DOI: 10.1016/j.tetlet.2006.08.086.CrossRefGoogle Scholar
  24. Kuninobu, Y., Morita, J., Nishi, M., Kawata, A., & Takai, K. (2009). Rhenium-catalyzed formation of bicyclo[3.3.1]nonene frameworks by a reaction of cyclic β-keto esters with terminal alkynes. Organic Letters, 11, 2535–2537. DOI: 10.1021/ol900772h.CrossRefGoogle Scholar
  25. Little, A., & Porco, J. A., Jr. (2012). Total syntheses of Graphisin A and Sydowinin B. Organic Letters, 14, 2862–2865. DOI: 10.1021/ol301107m.CrossRefGoogle Scholar
  26. Li, Y., Zhang, C., Sun, M., & Gao, W. (2009). Facile synthesis of 10-tert-butyl[1]benzoxepino[3,4-b][1,3]-dioxolo[4,5-g]quinolin-12(6H)-ones. Journal of Heterocyclic Chemistry, 46, 1190–1194. DOI: 10.1002/jhet.203.CrossRefGoogle Scholar
  27. Liao, M., & Wang, J. (2006). CuSO4-catalyzed diazo decomposition in water: a practical synthesis of β-keto esters. Tetrahedron Letters, 47, 8859–8861. DOI: 10.1016/j.tetlet.2006.10.059.CrossRefGoogle Scholar
  28. Magesh, C. J., Makesh, S. V., & Perumal, P. T. (2004). Highly diastereoselective inverse electron demand (IED) Diels-Alder reaction mediated by chiral salen-AlCl complex: the first, target-oriented synthesis of pyranoquinolines as potential antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 14, 2035–2040. DOI: 10.1016/j.bmcl.2004.02.057.CrossRefGoogle Scholar
  29. Majumdar, K. C., Taher, A., & Ponra, S. (2010). Unusual product from condensative cyclization: Pyrano[3,2-f]quinolin-3,10-diones from 6-amino-5-[(trimethylsilyl)ethynyl]-2H-chromen-2-one and aryl aldehydes. Synlett, 2010, 735–740. DOI: 10.1055/s-0029-1219378.CrossRefGoogle Scholar
  30. Matsuya, Y., Katayanagi, H., Ohdaira, T., Wei, Z. L., Kondo, T., & Nemoto, H. (2009). Novel 3,4-diazabenzotropone compounds (2,3-benzodiazepin-5-ones): synthesis, unique reactivity, and biological evaluation. Organic Letters, 11, 1361–1364. DOI: 10.1021/ol900154x.CrossRefGoogle Scholar
  31. Mohmed, E. A. (1994). Some new quinolones of expected pharmaceutical importance derived from 1,2-dihydro-4-hydroxy-1-methyl-2-oxoquinoline-3-carbaldehyde. Chemical Papers, 48, 261–267.Google Scholar
  32. Mordant, C., Reymond, S., Tone, H., Lavergne, D., Touati, R., Ben Hassine, B., Ratovelomanana-Vidal, V., & Genet, J. P. (2007). Total synthesis of dolastatin 10 through ruthenium-catalyzed asymmetric hydrogenations. Tetrahedron, 63, 6115–6123. DOI: 10.1016/j.tet.2007.03.036.CrossRefGoogle Scholar
  33. Murata, H., Ishitani, H., & Iwamoto, M. (2008). Selective synthesis of α-substituted β-keto esters from aldehydes and diazoesters on mesoporous silica catalysts. Tetrahedron Letters, 49, 4788–4791. DOI: 10.1016/j.tetlet.2008.05.077.CrossRefGoogle Scholar
  34. Nawrot-Modranka, J., Nawrot, E., & Graczyk, J. (2006). In vivo antitumor, in vitro antibacterial activity and alkylating properties of phosphorohydrazine derivatives of coumarin and chromone. European Journal of Medicinal Chemistry, 41, 1301–1309. DOI: 10.1016/j.ejmech.2006.06.004.CrossRefGoogle Scholar
  35. Padwa, A., & Au, A. (1976). Involvement of enol tautomers in the photoisomerization of 3-substituted isochromanones. Journal of the American Chemical Society, 98, 5581–5590. DOI: 10.1021/ja00434a029.CrossRefGoogle Scholar
  36. Phun, L. H., Patil, D. V., Cavitt, M. A., & France, S. (2011). A catalytic homo-Nazarov cyclization protocol for the synthesis of heteroaromatic ring-fused cyclohexanones. Organic Letters, 13, 1952–1955. DOI: 10.1021/ol200305n.CrossRefGoogle Scholar
  37. Ramesh, M., Mohan, P. S., & Shanmugam, P. (1984). A convenient synthesis of flindersine, atanine and their analogues. Tetrahedron, 40, 4041–4049. DOI: 10.1016/0040-4020(84)85084-x.CrossRefGoogle Scholar
  38. Singh, M. K., Chandra, A., Singh, B., & Singh, R. M. (2007). Synthesis of diastereomeric 2,4-disubstituted pyrano[2,3-b]quinolines from 3-formyl-2-quinolones through O-C bond formation via intramolecular electrophilic cyclization. Tetrahedron Letters, 48, 5987–5990. DOI: 10.1016/j.tetlet.2007.06.127.CrossRefGoogle Scholar
  39. Singh, B., Chandra, A., Singh, S., & Singh, R. M. (2011). Basefree NIS promoted electrophilic cyclization of alkynes: an efficient synthesis of iodo substituted pyrano[4,3-b]quinolines. Tetrahedron, 67, 505–511. DOI: 10.1016/j.tet.2010.10.081.CrossRefGoogle Scholar
  40. Temperini, C., Cecchi, A., Scozzafava, A., & Supuran, C. T. (2009). Carbonic anhydrase inhibitors. Comparison of Chlorthalidone and Indapamide X-ray crystal structures in adducts with isozyme II: When three water molecules and the keto-enol tautomerism make the difference. Journal of Medicinal Chemistry, 52, 322–328. DOI: 10.1021/jm801386n.CrossRefGoogle Scholar
  41. Witherup, K.M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M., & Varga, S. L. (1995). Martinelline and martinellic acid, novel G-protein linked receptor antagonists from the tropical plant Martinella iquitosensis (Bignoniaceae). Journal of the American Chemical Society, 117, 6682–6685. DOI: 10.1021/ja00130a005.CrossRefGoogle Scholar
  42. Wu, L., & Yang, D. (2009). Synthesis, characterization and single crystal structure of ethyl 2-(substituted-piperazin-1-ylmethyl)-quinoline-3-carboxylate derivatives. Chinese Journal of Organic Chemistry, 29, 1122–1128.Google Scholar
  43. Wu, J., Chen, W., Hu, M., Zou, H., & Yu, Y. (2010). Synthesis of polysubstituted 5-aminooxazoles from α-diazocarbonyl esters and α-isocyanoacetamides. Organic Letters, 12, 616–618. DOI: 10.1021/ol902850a.CrossRefGoogle Scholar
  44. Xue, S., Liu, Y. K., Li, L. Z., & Guo, Q. X. (2005). Zinc-mediated ring-expansion and chain-extension reactions of β-keto esters. The Journal of Organic Chemistry, 70, 8245–8247. DOI: 10.1021/jo0512498.CrossRefGoogle Scholar
  45. Yadav, J. S., Subba Reddy, B. V., Eeshwaraiah, B., & Reddy, P. N. (2005). Niobium(V) chloride-catalyzed C-H insertion reactions of α-diazoesters: synthesis of β-keto esters. Tetrahedron, 61, 875–878. DOI: 10.1016/j.tet.2004.11.027.CrossRefGoogle Scholar
  46. Yamada, N., Kadowaki, S., Takahashi, K., & Umezu, K. (1992). MY-1250, a major metabolite of the anti-allergic drug repirinast, induces phosphorylation of a 78-kDa protein in rat mast cells. Biochemical Pharmacology, 44, 1211–1213. DOI: 10.1016/0006-2952(92)90387-x.CrossRefGoogle Scholar
  47. Zhang, Q., Zhang, Z., Yan, Z., Liu, Q., & Wang, T. (2007). A new efficient synthesis of pyranoquinolines from 1-acetyl N-arylcyclopentanecarboxamides. Organic Letters, 9, 3651–3653. DOI: 10.1021/ol701536q.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Ming-Qin Chang
    • 1
  • Feng Gao
    • 1
  • Yang Li
    • 1
  • Wen-Tao Gao
    • 1
  1. 1.Institute of Superfine ChemicalsBohai UniversityJinzhouChina

Personalised recommendations