Advertisement

Chemical Papers

, Volume 67, Issue 1, pp 3–8 | Cite as

Palladium-catalysed Claisen rearrangement of 6-allyloxypurines

  • Petr Koukal
  • Hana Dvořáková
  • Dalimil Dvořák
  • Tomáš TobrmanEmail author
Original Paper

Abstract

6-Allyloxypurines readily undergo palladium-catalysed Claisen rearrangement under mild conditions affording N 1-substituted hypoxanthines. In contrast with the previously reported protocol, the Claisen rearrangement can be performed using Pd(PPh3)4 or Pd(dba)2/dppf in dry THF at 60°C. The reaction can accommodate variously substituted allyl fragments to position N 1 of the hypoxanthine skeleton with high yields. Retention of the double bond configuration during rearrangement was observed.

Keywords

Claisen rearrangement purine allyloxypurines palladium hypoxanthine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castro, A. M. M. (2004). Claisen rearrangement over the past nine decades. Chemical Reviews, 104, 2939–3002. DOI: 10.1021/cr020703u.CrossRefGoogle Scholar
  2. De Clercq, E., & Neyts, J. (2004). Therapeutic potential of nucleoside/nucleotide analogues against poxvirus infections. Reviews in Medical Virology, 14, 289–300. DOI: 10.1002/rmv.439.CrossRefGoogle Scholar
  3. Kimura, K., & Bugg, T. D. H. (2003). Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Natural Product Reports, 20, 252–273. DOI: 10.1039/b202149h.CrossRefGoogle Scholar
  4. Kotek, V., Chudíková, N., Tobrman, T., & Dvořák, D. (2010). Selective synthesis of 7-substituted purines via 7,8-dihydropurines. Organic Letters, 12, 5724–5727. DOI: 10.1021/ol1025525.CrossRefGoogle Scholar
  5. Kotek, V., Tobrman, T., & Dvořák, D. (2012). Highly efficient and broad-scope protocol for the preparation of 7-substituted 6-halopurines via N9-Boc-protected 7,8-dihydropurines Synthesis, 2012, 610–618. DOI: 10.1055/s-0031-1290068.Google Scholar
  6. Lagoja, I. M. (2005). Pyrimidine as constituent of natural biologically active compounds. Chemistry & Biodiversity, 2, 1–50. DOI: 10.1002/cbdv.200490173.CrossRefGoogle Scholar
  7. Mitchell, S. S., Whitehill, A. B., Trapido-Rosenthal, H. G., & Ireland, C. M. (1997). Isolation and characterization of 1,3-dimethylisoguanine from the Bermudian sponge Amphimedon viridis. Journal of Natural Products, 60, 727–728. DOI: 10.1021/np970015j.CrossRefGoogle Scholar
  8. Miura, S., & Izuta, S. (2004). DNA polymerases as targets of anticancer nucleosides. Current Drug Targets, 5, 191–195. DOI: 10.2174/1389450043490578.CrossRefGoogle Scholar
  9. Petrović, M., B., Simonović, A. T., Radovanović, M. B., Milić, S. M., & Antonijević, M. M. (2012). Influence of purine on copper behavior in neutral and alkaline sulfate solutions. Chemical Papers, 66, 664–676. DOI: 10.2478/s11696-012-0174-y.CrossRefGoogle Scholar
  10. Phelps, K., Morris, A., & Beal, P. A. (2012). Novel modifi-cations in RNA. ACS Chemical Biology, 7, 100–109. DOI: 10.1021/cb200422t.CrossRefGoogle Scholar
  11. Rachakonda, S., & Cartee, L. (2004). Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics. Current Medicinal Chemistry, 11, 775–793. DOI: 10.2174/0929867043455774.CrossRefGoogle Scholar
  12. Ranganathan, D., Rathi, R., Keshavan, K., & Pal Singh, W. (1986). The demonstration of normal O→N Claisen rearrangement in purines. Tetrahedron, 42, 4873–4878. DOI: 10.1016/s0040-4020(01)82069-x.CrossRefGoogle Scholar
  13. Schenck, T. G., & Bosnich B. (1985). Homegeneous catalysis. Transition-metal-catalyzed Claisen rearrangements. Journal of the American Chemical Society, 107, 2058–2066. DOI: 10.1021/ja00293a041.Google Scholar
  14. Simons, C., Wu, Q., & Htar, T. T. (2005). Recent advances in antiviral nucleoside and nucleotide therapeutics. Current Topics in Medicinal Chemistry, 5, 1191–1203.CrossRefGoogle Scholar
  15. Szafraniec, S. I., Stachnik, K. J., & Skierski, J. S. (2004). New nucleoside analogs in the treatment of hematological disorders. Acta Poloniae Pharmaceutica — Drug Research, 61, 223–232.Google Scholar
  16. Tobrman, T., & Dvořák, D. (2003). 6-Magnesiated purines: Preparation and reaction with aldehydes. Organic Letters, 5, 4289–4291. DOI: 10.1021/ol0355027.CrossRefGoogle Scholar
  17. Tobrman, T., & Dvořák, D. (2008). Heck reactions of 6- and 2-halopurines. European Journal of Organic Chemistry, 2008, 2923–2928. DOI: 10.1002/ejoc.200800091.CrossRefGoogle Scholar
  18. Vik, A., & Gundersen, L. L. (2007). Synthetic studies directed towards asmarines; construction of the tetrahydrodiazepinopurine moiety by ring closing metathesis. Tetrahedron Letters, 48, 1931–1934. DOI: 10.1016/j.tetlet.2007.01.090.CrossRefGoogle Scholar
  19. Wieland, T., & Bauer, L. (1951). Weitere Versuche zur Stofftrennung durch Papierchromatographie und Ionophroese. Purine und Aminosäuren. Angewandte Chemie, 63, 511–513. DOI: 10.1002/ange.19510632104.CrossRefGoogle Scholar
  20. Yagi, H., Matsunaga, S., & Fusetani, N. (1994). Isolation of 1-methylherbipoline, a purine base, from a marine sponge, Jaspis sp. Journal of Natural Products, 57, 837–838. DOI: 10.1021/np50108a025.CrossRefGoogle Scholar
  21. Yamada, T., Peng, C. G., Matsuda, S., Addepalli, H., Jayaprakash, K. N., Alam, M. R., Mills, K., Maier, M. A., Charisse, K., Sekine, M., Manoharan, M., & Rajeev, K. G. (2011). Versatile site-specific conjugation of small molecules to siRNA using click chemistry. The Journal of Organic Chemistry, 76, 1198–1211. DOI: 10.1021/jo101761g.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Petr Koukal
    • 1
  • Hana Dvořáková
    • 1
  • Dalimil Dvořák
    • 1
  • Tomáš Tobrman
    • 1
    Email author
  1. 1.Department of Organic ChemistryInstitute of Chemical TechnologyPrague 6Czech Republic

Personalised recommendations