Advertisement

Chemical Papers

, Volume 66, Issue 12, pp 1103–1110 | Cite as

Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate

  • Felicita BriškiEmail author
  • Nina Kopčić
  • Ivana Ćosić
  • Dajana Kučić
  • Marija Vuković
Original Paper

Abstract

The tobacco industry produces large quantities of solid and liquid waste. This waste poses a significant environmental problem, as some major components are harmful and toxic. The aim of this work is to isolate and identify the nicotine-degrading microorganisms in the composting of tobacco waste. The bioremediation process for the detoxification of waste was carried out in a column reactor at an airflow-rate of 0.4 L min−1 kg−1. The concentrations of nicotine and number of CFU in the samples taken from reactor were monitored over nineteen days. After nineteen days, 89.8 % of nicotine conversion was obtained. A nicotine-degrading bacterium, strain FN, was isolated from the composting mass and identified as Pseudomonas aeruginosa on the basis of morphology, 16S rDNA sequence, and the phylogenetic characteristics. To confirm that the isolated Pseudomonas aeruginosa FN is the actual nicotine degrader, batch experiments were performed using tobacco leachate. It was confirmed that the strain FN possesses a considerable capacity to degrade nicotine with simultaneous COD removal. The Monod kinetic model for single substrate was applied to obtain the substrate degradation rate and half saturation constant.

Keywords

bioremediation composting nicotine tobacco waste Pseudomonas aeruginosa FN Monod model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abuhamed, T., Bayraktar, E., Mehmetoğlu, T., & Mehmetoğlu, Ü. (2004). Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochemistry, 39, 983–988. DOI: 10.1016/s0032-9592(03)00210-3.CrossRefGoogle Scholar
  2. Ambriović-Ristov, A., Brozović, A., Bruvo Mađarić, B., Ćetković, H., Hranilović, D., Herak Bosnar, M., Katušić Hećimović, S., Meštrović Radan, N., Mihaljević, S., Slade, N., & Vujaklija, D. (2007). Metode u molekularnoj biologiji. Zagreb, Croatia: Institut RuĐer Bošković.Google Scholar
  3. Antizar-Ladislao, B., Lopez-Real, J., & Beck, A. J. (2005). Invessel composting-bioremediation of aged coal tar soil: effect of temperature and soil/green waste amendment ratio. Environment International, 31, 173–178. DOI: 10.1016/j.envint.2004.09.012.CrossRefGoogle Scholar
  4. APHA (1999). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA: American Public Health Association.Google Scholar
  5. Austrian Standardization Institute (1986). Austrian standard: Analytical methods and quality control for waste compost. OE-NORM S 2023. Vienna, Austria.Google Scholar
  6. Barker, A. V., & Bryson, G. M. (2002). Bioremediation of heavy metals and organic toxicants by composting. The Scientific World Journal, 2, 407–420. DOI: 10.1100/tsw.2002.91.CrossRefGoogle Scholar
  7. Beltran, J., Gonzalez, T., & Garcia, J. (2008). Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments. Journal of Hazardous Materials, 154, 839–548. DOI: 10.1016/j.jhazmat.2007.10.102.CrossRefGoogle Scholar
  8. Bergey, D. H., & Holt, J. G. (1994). Bergey’s manual of determinative bacteriology. Baltimore, MD, USA: Lippincott Williams & Wilkins.Google Scholar
  9. Briški, F., Horgas, N., Vuković, M., & Gomzi, Z. (2003). Aerobic composting of tobacco industry solid waste-simulation of the process. Clean Technology and Environmental Policy, 5, 295–301. DOI: 10.1007/s10098-003-0218-7.CrossRefGoogle Scholar
  10. Casey, T. J. (1996). Unit treatment processes in water and waste engineering. New York, NY, USA: Wiley.Google Scholar
  11. Cayuela, M. L., Sanchez-Monedero, M. A., & Roig, A. (2006). Evaluation of two different aeration systems for composting two-phase olive mill wastes. Process Biochemistry, 41, 616–623. DOI: 10.1016/j.procbio.2005.08.007.CrossRefGoogle Scholar
  12. Chen, C. M., Li, X. M., Yang, J. K., Gong, X. W., Li, B., & Zhang, K. Q. (2008). Isolation of nicotine-degrading bacterium Pseudomonas sp. Nic22, and its potential application in tobacco processing. International Biodeterioration & Biodegradation, 62, 226–231. DOI: 10.1016/j.ibiod.2008.01.012.CrossRefGoogle Scholar
  13. Civilini, M., Domenis, C., Sebastianutto, N., & de Bertoldi, M. (1997). Nicotine decontamination of tobacco agroindustrial waste and its degradation by microorganisms. Waste Management & Research, 15, 349–358. DOI: 10.1006/wmre.1997.0091.Google Scholar
  14. Civilini, M., Venuti, F., de Bertoldi, M., Lonigro, R., & Damante, G. (2002). Nicotine dehydrogenase gene distribution in nicotinophilic Arthrobacter strains. Annals of Microbiology, 52, 307–315.Google Scholar
  15. European Committee for Standardization (2002). European norm: Characterization of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. Onestage batch test at a liquid to solids ratio of 10 l/kg for materials with particle size below 10 (without or with size reduction). EN 12457-4. Brussels, Belgium.Google Scholar
  16. Fontenelle, L. T., Corgie, S. C., & Walker, L. P. (2011). Integrating mixed microbial population dynamics into modeling energy transport during the initial stages of the aerobic composting of a switchgrass mixture. Bioresource Technology, 102, 5162–5168. DOI: 10.1016/j.biortech.2011.01.034.CrossRefGoogle Scholar
  17. Fox, P., & Makam, R. (2011). Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment. Water Research, 45, 4419–4427. DOI: 10.1016/j.watres.2011.05.023.CrossRefGoogle Scholar
  18. Gong, X. W., Yang, J. K., Dua, Y. Q., Dong, J. Y., Zhe, W., Wang, L., Li, Q. H., & Zhang, K. Q. (2009). Isolation and characterization of Rhodococcus sp. Y22 and its potential application to tobacco processing. Research in Microbiology, 160, 200–204. DOI: 10.1016/j.resmic.2009.02.004.CrossRefGoogle Scholar
  19. Haug, R. T. (1993). The practical handbook of compost engineering. Boca Raton, FL, USA: Lewis Publishers.Google Scholar
  20. Jiang, H. J., Ma, Y., Qiu, G. J., Wu, F. L., & Chen, S. L. (2011). Biodegradation of nicotine by a novel strain Shinella sp. HZN1 isolated from activated sludge. Journal of Environmental Science & Health, 48, 703–708. DOI: 10.1080/03601234.2011.594409.Google Scholar
  21. Kim, D. J., Choi, J. W., Choi, N. C., Mahendran, B., & Lee, C. E. (2005). Modeling of growth kinetics for Pseudomonas spp. during benzene degradation. Applied Microbiology and Biotechnology, 69, 456–462. DOI: 10.1007/s00253-005-1997-z.CrossRefGoogle Scholar
  22. Kulcu, R., Sönmez, İ, Yaldiz, O., & Kaplan, M. (2008). Composting of spent mushroom compost, carnation wastes, chicken and cattle manures. Bioresource Technology, 99, 8259–8264. DOI:10.1016/j.biortech.2008.03.074CrossRefGoogle Scholar
  23. Li, H. J., Duan, Y. Q., Ma, G. H., Lei, L. P., Zhang, K. Q., & Yang, J. K. (2011). Isolation and characterization of Acinetobacter sp. ND12 capable of degrading nicotine. African Journal of Microbiology Research, 5, 1335–1341.Google Scholar
  24. McMahon, V., Garg, A., Aldred, D., Hobbs, G., Smith, R., & Tothill, I. E. (2008). Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry. Chemosphere, 71, 1617–1628. DOI: 10.1016/j.chemosphere.2008.01.031.CrossRefGoogle Scholar
  25. NCBI (2012). BLAST [computer software] Bethesda, MD, USA: National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov Google Scholar
  26. Piotrowska-Cyplik, A., Olejnik, A., Cyplik, P., Dach, J., & Czarnecki, Z. (2009). The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresource Technology, 100, 5037–5044. DOI: 10.1016/j.biortech.2009.05.053.CrossRefGoogle Scholar
  27. Prescott, L. M., Harley, J. P., & Klein, D. A. (1996). Microbiology (3rd ed.). Chichester, UK: WCB Publishers.Google Scholar
  28. Renčo, M., Sasanelli, N., & Kovačik, P. (2011). The effect of soil compost treatments on potato cyst nematodes Globodera rostochiensis and Globodera pallida. Helminthologia, 48, 184–194. DOI: 10.2478/s11687-011-0027-1.CrossRefGoogle Scholar
  29. Ruan, A. D., Min, H., Peng, X. H., & Huang, Z. (2005). Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine. Research in Microbiology, 156, 700–706. DOI:10.1016/j.resmic.2005.02.010.CrossRefGoogle Scholar
  30. Salehi, Z., Sohrabi, M., Vahabzadeh, F., Fatemi, S., & Kawase, Y. (2010). Modeling of p-nitrophenol biodegradation by Ralstonia eutropha via application of the substrate inhibition concept. Journal of Hazardous Materials, 177, 582–585. DOI: 10.1016/j.jhazmat.2009.12.072.CrossRefGoogle Scholar
  31. Sanchez-Arias, V., Fernandez, F. J., Villaseñor, J., & Rodriguez, L. (2008). Enhancing the co-composting of olive mill wastes and sewage sludge by the addition of an industrial waste. Bioresource Technology, 99, 6346–6355. DOI: 10.1016/j.biortech.2007.12.013.CrossRefGoogle Scholar
  32. Tambwekar, K. R., Kakariya, R. B., & Garg, S. (2003). A validated high performance liquid chromatographic method for analysis of nicotine in pure form and from formulations. Journal of Pharmaceutical and Biomedical Analysis, 32, 441–450. DOI: 10.1016/s0731-7085(03)00236-x.CrossRefGoogle Scholar
  33. Wang, J. L., Liu, P., & Qian, Y. (1996). Kinetics of phthalic acid esters degradation by acclimated activated sludge. Environment International, 22, 731–741. DOI: 10.1016/s0160-4120(96)00065-7.CrossRefGoogle Scholar
  34. Wang, S. N., Xu, P., Tang, H. Z., Meng, J., Liu, X. L., Huang, J., Chen, H., Du, Y., & Blankespoor, H. D. (2004). Biodegradation and detoxification of nicotine in tobacco solid waste by a Pseudomonas sp. Biotechnology Letters, 26, 1493–1496. DOI: 10.1023/b:bile.0000044450.16235.65.CrossRefGoogle Scholar
  35. Wang, M. Z., Yang, G. Q., Min, H., Lv, Z. M., & Jia, X. Y. (2009). Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: Degradation study and analysis of its mechanisms. Water Research, 43, 4187–4196. DOI: 10.1016/j.watres.2009.07.012.CrossRefGoogle Scholar
  36. Wong, J. W. C., Mak, K. F., Chan, N.W., Lam, A., Fang, M., Zhou, L. X., Wu, Q. T., & Liao, X. D. (2001). Co-composting of soybean residues and leaves in Hong Kong. Bioresource Technology, 76, 99–106. DOI: 10.1016/s0960-8524(00)00103-6.CrossRefGoogle Scholar
  37. Yuan, Y. J., Lu, Z. X., Huang, L. J., Bie, X. M., Lü, F. X., & Li, Y. (2006). Optimization of a medium for enhancing nicotine biodegradation by Ochrobactrum intermedium DN2. Journal of Applied Microbiology, 101, 691–697. DOI: 10.1111/j.1365-2672.2006.02929.x.CrossRefGoogle Scholar
  38. Yuan, Y. J., Lu, Z. X., Huang, L. J., Li, Y., Lu, F. X., Bie, X. M., Teng, Y. Q., & Lin, Q. (2007). Biodegradation of nicotine from tobacco waste extract by Ochrobactrum intermedium DN2. Journal of Industrial Microbiology & Biotechnology, 34, 567–570. DOI: 10.1007/s10295-007-0212-x.CrossRefGoogle Scholar
  39. Zhong, W. H., Zhu, C. J., Shu, M., Sun, K. D., Zhao, L., Wang, C., Ye, Z. J., & Chen, J. M. (2010). Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresource Technology, 101, 6935–6941. DOI: 10.1016/j.biortech.2010.03.142.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Felicita Briški
    • 1
    Email author
  • Nina Kopčić
    • 1
  • Ivana Ćosić
    • 1
  • Dajana Kučić
    • 1
  • Marija Vuković
    • 1
  1. 1.Department of Industrial Ecology, Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations