Chemical Papers

, Volume 66, Issue 10, pp 949–954 | Cite as

Influence of various spices on acrylamide content in buckwheat ginger cakes

  • Lucie Marková
  • Zuzana Ciesarová
  • Kristína Kukurová
  • Henryk Zieliński
  • Małgorzata Przygodzka
  • Alena Bednáriková
  • Peter Šimko
Original Paper

Abstract

The aim of this work was to study the effect of various spices (cloves, cinnamon, allspice, white pepper, anise, star anise, coriander, fennel, nutmeg, cardamom, vanilla, and ginger) on acrylamide formation in buckwheat ginger cakes. The spices were characterised by their free radical scavenging activity and applied to formulation of the buckwheat ginger cakes in the same portions. After baking, the acrylamide content was determined by LC/ESI-MS-MS. The results showed a reduction in acrylamide content of up to 23 % in the buckwheat ginger cakes with the addition of nutmeg, fennel, anise, or cloves. A decrease in acrylamide content from 5 % to 11 % was found in the buckwheat ginger cakes with vanilla, cardamom, white pepper, or ginger. By contrast, the acrylamide content in the buckwheat ginger cakes with cinnamon or coriander increased by up to 29 %. No change in the acrylamide content was observed in the buckwheat ginger cakes with star anise or allspice. Only a slight correlation between the di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH·) free radical scavenging activity of the added spices and the final acrylamide content in the buckwheat ginger cakes (0.68) was observed. The final acrylamide content was probably influenced not only by the free radical scavenging activity of the spices added, but also by their chemical composition and the reactiveness of particular constituents with synergistic/antagonistic effect in the matrix studied.

Keywords

acrylamide anti-oxidative capacity ginger cakes spices buckwheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und Technologie, 28, 25–30. DOI: 10.1016/s0023-6438(95)80008-5.CrossRefGoogle Scholar
  2. Bassama, J., Brat, P., Bohuon, P., Boulanger, R., & Günata, Z. (2010). Study of acrylamide mitigation in model system: Effect of pure phenolic compounds. Food Chemistry, 123, 558–562. DOI: 10.1016/j.foodchem.2010.04.071.CrossRefGoogle Scholar
  3. Cheng, K. W., Zeng, X., Tang, Y. S., Wu, J. J., Liu, Z., Sze, K. H., Chu, I. K., Chen, F., & Wang, M. (2009). Inhibitory mechanism of naringenin against carcinogenic acrylamide formation and nonenzymatic browning in maillard model reactions. Chemical Research in Toxicology, 22, 1483–1489. DOI: 10.1021/tx9001644.CrossRefGoogle Scholar
  4. Ciesarová, Z. (2005). Minimalizácia obsahu akrylamidu v potravinách. Chemické Listy, 99, 483–491.Google Scholar
  5. Ciesarová, Z., Suhaj, M., & Horváthová, J. (2008). Correlation between acrylamide contents and antioxidant capacities of spice extracts in a model potato matrix. Journal of Food and Nutrition Research, 47, 1–5.Google Scholar
  6. Ciesarová, Z., Kukurová, K., Bednáriková, A., & Morales, F. J. (2009). Effect of heat treatment and dough formulation on the formation of Maillard reaction products in fine bakery products — benefits and weak points. Journal of Food and Nutrition Research, 48, 20–30.Google Scholar
  7. Fernández, S., Kurppa, L., & Hyvönen, L. (2003). Content of acrylamide decreased in potato chips with the addition of a proprietary flavonoid spice mix (Flavomare®) in frying. Innovations in Food Technology, 18, 24–26.Google Scholar
  8. FoodDrinkEurope (2011). Acrylamide toolbox. Retrieved May 9, 2012, from http://ec.europa.eu/food/food/chemicalsafety/contaminants/ciaa_acrylamide_toolbox09.pdf
  9. Friedman, M., & Levin, C. E. (2008). Review of methods for the reduction of dietary content and toxicity of acrylamide. Journal of Agricultural and Food Chemistry, 56, 6113–6140. DOI: 10.1021/jf0730486.CrossRefGoogle Scholar
  10. Hedegaard, R. V., Granby, K., Frandsen, H., Thygesen, J., & Skibsted, L. H. (2008). Acrylamide in bread. Effect of prooxidants and antioxidants. European Food Research and Technology, 227, 519–525. DOI: 10.1007/s00217-007-0750-5.CrossRefGoogle Scholar
  11. Knol, J. J., van Loon, W. A. M., Linssen, J. P. H., Ruck, A. L., van Boekel, M. A. J. S., & Voragen, A. G. J. (2005). Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system. Journal of Agricultural and Food Chemistry, 53, 6133–6139. DOI: 10.1021/jf050504m.CrossRefGoogle Scholar
  12. Kotsiou, K., Tasioula-Margari, M., Capuano, E., & Fogliano, V. (2011). Effect of standard phenolic compounds and olive oil phenolic extracts on acrylamide formation in an emulsion system. Food Chemistry, 124, 242–247. DOI: 10.1016/j.foodchem.2010.06.025.CrossRefGoogle Scholar
  13. Kukurová, K., Marková, L., Bednáriková, A., Ciesarová, Z., & Zieliński, H. (2011). Impact of rye flour replacement in ginger cakes by buckwheat flour on acrylamide formation. Polish Journal of Food and Nutrition Sciences, 61, 38.Google Scholar
  14. Ou, S., Shi, J., Huang, C., Zhang, G., Teng, J., Jiang, Y., & Yang, B. (2010). Effect of antioxidants on elimination and formation of acrylamide in model reaction systems. Journal of Hazardous Materials, 182, 863–868. DOI: 10.1016/j.jhazmat.2010.06.124.CrossRefGoogle Scholar
  15. Parthasarathy, V. A., Chempakam, B., & Zachariah, T. J. (Eds.). (2008). Chemistry of spices. Wallingford, UK: CABI.Google Scholar
  16. Peter, K. V. (2001). Handbook of herbs and spices (Vol. 1). Cambridge, UK: Woodhead Publishing Limited.Google Scholar
  17. Peter, K. V. (2004). Handbook of herbs and spices (Vol. 2). Cambridge, UK: Woodhead Publishing Limited.Google Scholar
  18. Przygodzka, M., Zielińska, D., Ciesarová, Z., & Zieliński, H. (2011). Screening of the antioxidant capacity of selected spices by updated analyticl strategies. Polish Journal of Food and Nutrition Sciences, 61,1S, 93–94.Google Scholar
  19. Rydberg, P., Eriksson, S., Tareke, E., Karlsson, P., Ehrenberg, L., & Törnquist, M. (2003). Investigation of factors that influence the acrylamide content of heated foodstuffs. Journal of Agricultural and Food Chemistry, 51, 7012–7018. DOI: 10.1021/jf034649+.CrossRefGoogle Scholar
  20. Schieberle, P., Köhler, P., & Granvogl, M. (2005). New aspects on the formation and analysis of acrylamide. In M. Friedman, & D. S. Mottram (Eds.), Chemistry and safety of acrylamide in food (pp. 205–222). New York, NY, USA: Springer.CrossRefGoogle Scholar
  21. Stadler, R. H., Robert, F., Riediker, S., Varga, N., Davidek, T., Devaud, S., Goldmann, T., Hau, J., & Blank, I. (2004). In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. Journal of Agricultural and Food Chemistry, 52, 5550–5558. DOI: 10.1021/jf0495486.CrossRefGoogle Scholar
  22. Steinhaus, M., & Schieberle, P. (2005). Characterization of odorants causing an atypical aroma in white pepper powder (Piper nigrum L.) based on quantitative measurements and orthonasal breakthrough thresholds. Journal of Agricultural and Food Chemistry, 53, 6049–6055. DOI: 10.1021/jf0506030.CrossRefGoogle Scholar
  23. IARC (1994). Acrylamide. In Some industrial chemicals. IARC Monographs on the evaluation of carcinogenic risk of chemicals to humans (Vol. 60, pp. 389–433). Lyon, France: International Agency for Research on Cancer.Google Scholar
  24. Zieliński, H., Amigo-Benavent, M., Del Castillo, M. D., Horszwald, A., & Zielińska, D. (2010). Formulation and baking process affect Maillard reaction development and antioxidant capacity of ginger cakes. Journal of Food and Nutrition Research, 49, 140–148.Google Scholar
  25. Zieliński, H., Ciesarova, Z., Troszyńska, A., Ceglińska, A., Zielińska, D., Amarowicz, R., Przygodzka, M., & Kukurova, K. (2012). Antioxidant properties, acrylamide content and sensory quality of ginger cakes with different formulations. Polish Journal of Food and Nutrition Sciences, 62, 41–50. DOI: 10.2478/v10222-011-0038-0.CrossRefGoogle Scholar
  26. Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., Gruber, D. C., Morsch, T. R., Strothers, M. A., Rizzi, G. P., & Villagran, M. D. (2003). Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 51, 4782–4787. DOI: 10.1021/jf034180i.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Lucie Marková
    • 1
    • 2
  • Zuzana Ciesarová
    • 2
  • Kristína Kukurová
    • 2
  • Henryk Zieliński
    • 3
  • Małgorzata Przygodzka
    • 3
  • Alena Bednáriková
    • 2
  • Peter Šimko
    • 2
  1. 1.Faculty of ChemistryBrno University of TechnologyBrnoCzech Republic
  2. 2.Food Research InstituteBratislava 26Slovakia
  3. 3.Institute of Animal Reproduction and Food Research of Polish Academy of SciencesOlsztynPoland

Personalised recommendations