Advertisement

Chemical Papers

, Volume 65, Issue 5, pp 721–729 | Cite as

Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol

  • Noorzalila Muhammad Niza
  • Kok Tat Tan
  • Zainal Ahmad
  • Keat Teong LeeEmail author
Original Paper

Abstract

In this study, biodiesel has been successfully produced by transesterification using non-catalytic supercritical methanol and methyl acetate. The variables studied, such as reaction time, reaction temperature and molar ratio of methanol or methyl acetate to oil, were optimised to obtain the optimum yield of fatty acid methyl ester (FAME). Subsequently, the results for both reactions were analysed and compared via Response Surface Methodology (RSM) analysis. The mathematical models for both reactions were found to be adequate to predict the optimum yield of biodiesel. The results from the optimisation studies showed that a yield of 89.4 % was achieved for the reaction with supercritical methanol within the reaction time of 27 min, reaction temperature of 358°C, and methanol-to-oil molar ratio of 44. For the reaction in the presence of supercritical methyl acetate, the optimum conditions were found to be: reaction time of 32 min, reaction temperature of 400°C, and methyl acetate-to-oil molar ratio of 50 to achieve 71.9 % biodiesel yield. The differences in the behaviour of methanol and methyl acetate in the transesterification reaction are largely due to the difference in reactivity and mutual solubility of Jatropha curcas oil and methanol/methyl acetate.

Keywords

supercritical methanol methyl acetate Jatropha curcas oil response surface methodology biodiesel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antolín, G., Tinaut, F. V., Briceño, Y., Castaño, V., Pérez, C., & Ramírez, A. I. (2002). Optimisation of biodiesel production by sunflower oil transesterification. Bioresource Technology, 83, 111–114. DOI: 10.1016/S0960-8524(01)00200-0.CrossRefGoogle Scholar
  2. Campanelli, P., Banchero, M., & Manna, L. (2010). Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification. Fuel, 89, 3675–3682. DOI: 10.1016/j.fuel.2010.07.033.CrossRefGoogle Scholar
  3. Cao, W., Han, H., & Zhang, J. (2005). Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel, 84, 347–351. DOI: 10.1016/j.fuel.2004.10.001.CrossRefGoogle Scholar
  4. Chen, Y., Xiao, B., Chang, J., Fu, Y., Lv, P., & Wang, X. (2009). Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. Energy Conversion and Management, 50, 668–673. DOI: 10.1016/j.enconman.2008.10.011.CrossRefGoogle Scholar
  5. Demirbas, A. (2007). Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Conversion and Management, 48, 937–941, DOI: 10.1016/j.enconman.2006.08.004.CrossRefGoogle Scholar
  6. Demirbaş, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43, 2349–2356. DOI: 10.1016/S0196-8904(01)00170-4.CrossRefGoogle Scholar
  7. Hawash, S., Kamal, N., Zaher, F., Kenawi, O., & El Diwani, G. (2009). Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel, 88, 579–582. DOI: 10.1016/j.fuel.2008.09.007.CrossRefGoogle Scholar
  8. Kafuku, G., Lee, K. T., & Mbarawa, M. (2010). The use of sulfated tin oxide as solid superacid catalyst for heterogenous transesterification of Jatropha curcas oil. Chemical Papers, 64, 734–740. DOI: 10.2478/s11696-010-0063-1.CrossRefGoogle Scholar
  9. Kansedo, J., Lee, K. T., & Bhatia, S. (2009). Biodiesel production from palm oil via heterogeneous transesterification. Biomass and Bioenergy, 33, 271–276. DOI: 10.1016/j.biombioe.2008.05.011.CrossRefGoogle Scholar
  10. Kusdiana, D., & Saka, S. (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91, 289–295. DOI: 10.1016/S0960-8524(03)00201-3.CrossRefGoogle Scholar
  11. Kusdiana, D., & Saka, S. (2001). Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80, 693–698. DOI: 10.1016/S0016-2361(00)00140-X.CrossRefGoogle Scholar
  12. Lang, X., Dalai, A. K., Bakhshi, N. N., Reaney, M. J., & Hertz, P. B. (2001). Preparation and characterization of biodiesels from various bio-oils. Bioresource Technology, 80, 53–62. DOI: 10.1016/S0960-8524(01)00051-7.CrossRefGoogle Scholar
  13. Openshaw, K. (2000). A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass and Bioenergy, 19, 1–15. DOI: 10.1016/S0961-9534(00)00019-2.CrossRefGoogle Scholar
  14. Riddick, J., & Bunger, W. (1970). Methyl acetate. In Organic solvents. New York, NY, USA: Wiley.Google Scholar
  15. Saka, S., & Isayama, Y. (2009). A new process for catalyst-free production of biodiesel using supercritical methyl acetate. Fuel, 88, 1307–1313. DOI: 10.1016/j.fuel.2008.12.028.CrossRefGoogle Scholar
  16. Saka, S., & Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80, 225–231. DOI: 10.1016/S0016-2361(00)00083-1.CrossRefGoogle Scholar
  17. Sawangkeaw, R., Bunyakiat, K., & Ngamprasertsith, S. (2010). A review of laboratory-scale research on lipid conversion to biodiesel with supercritical methanol (2001–2009). The Journal of Supercritical Fluids, 55, 1–13. DOI: 10.1016/j.supflu.2010.06.008.CrossRefGoogle Scholar
  18. Tan, K. T., Gui, M. M., Lee, K. T., & Mohamed, A. R. (2010a). An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production. The Journal of Supercritical Fluids, 53, 82–87. DOI:10.1016/j.supflu.2009.12.017.CrossRefGoogle Scholar
  19. Tan, K. T., Lee, K. T., & Mohamed, A. R. (2010b). A glycerolfree process to produce biodiesel by supercritical methyl acetate technology: An optimization study via Response Surface Methodology. Bioresource Technology, 101, 965–969. DOI: 10.1016/j.biortech.2009.09.004.CrossRefGoogle Scholar
  20. Tan, K. T., Lee, K. T., & Mohamed, A. R. (2009). Production of FAME by palm oil transesterification via supercritical methanol technology. Biomass and Bioenergy, 33, 1096–1099. DOI: 10.1016/j.biombioe.2009.04.003.CrossRefGoogle Scholar
  21. Vicente, G., Martínez, M., & Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, 92, 297–305. DOI: 10.1016/j.biortech.2003.08.014.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Noorzalila Muhammad Niza
    • 1
  • Kok Tat Tan
    • 1
  • Zainal Ahmad
    • 1
  • Keat Teong Lee
    • 1
    Email author
  1. 1.School of Chemical EngineeringUniversiti Sains MalaysiaPulau PinangMalaysia

Personalised recommendations