Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
Original Paper
First Online:
Received:
Revised:
Accepted:
- 172 Downloads
- 1 Citations
Abstract
Catechin and epicatechin were analysed in the peel of six apple cultivars (three resistant and three non-resistant to apple scab). Two methods of analytical sample preparation following extraction were tested: solid phase extraction and column separation with Sephadex LH-20 coupled to a differential refractometric detector. Prior to GC and GC-MS analyses, these compounds were silylized. This permitted co-injection with standards and the comparison of retention values and mass spectra with those recorded for standards. The content of catechin and epicatechin in apple peel is discussed in relation to the resistance of apple trees to scab.
Keywords
catechins apple scab refractometric detector GC GC-MSPreview
Unable to display preview. Download preview PDF.
References
- Amarowicz, R., & Shahidi, F. (1996). A rapid chromatographic method for separation of individual catechins from green tea. Food Research International, 29, 71–76. DOI: 10.1016/0963-9969(95)00048-8.CrossRefGoogle Scholar
- Arts, I. C. W., van de Putte, B., & Hollman, P. C. H. (2000). Catechin contents of foods commonly consumed in the Netherlands. Tea, wine, fruit juices, and chocolate milk. Journal of Agricultural and Food Chemistry, 48, 1752–1757. DOI: 10.1021/jf000026+.CrossRefGoogle Scholar
- Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition Journal, 3:5. DOI: 10.1186/1475-2891-3-5.CrossRefGoogle Scholar
- Burda, S., Oleszek, W., & Lee, C. Y. (1990). Phenolic compounds and their changes in apples during maturation and cold storage. Journal of Agricultural and Food Chemistry, 38, 945–948. DOI: 10.1021/jf00094a006.CrossRefGoogle Scholar
- Dalluge, J. J., & Nelson, B. C. (2000). Determination of tea catechins. Journal of Chromatography A, 881, 411–424. DOI: 10.1016/S0021-9673(00)00062-5.CrossRefGoogle Scholar
- Escarpa, A., & González, M. C. (1998). High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. Journal of Chromatography A, 823, 331–337. DOI: 10.1016/S0021-9673(98)00294-5.CrossRefGoogle Scholar
- Friedman, M. (2007). Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Molecular Nutrition & Food Research, 51, 116–134. DOI: 10.1002/mnfr.200600173.CrossRefGoogle Scholar
- Golding, J. B., McGlasson, W. B., Wyllie, S. G., & Leach, D. N. (2001). Fate of apple peel phenolics during cool storage. Journal of Agricultural and Food Chemistry, 49, 2283–2289. DOI: 10.1021/jf0015266.CrossRefGoogle Scholar
- Gómez-Alonso, S., García-Romero, E., & Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20, 618–626. DOI: 10.1016/j.jfca.2007.03.002.CrossRefGoogle Scholar
- Guyot, S., Marnet, N., Sanoner, P., & Drilleau, J.-F. (2003). Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. Journal of Agricultural and Food Chemistry, 51, 6240–6247. DOI: 10.1021/jf0301798.CrossRefGoogle Scholar
- Leja, M., Mareczek, A., & Ben, J. (2003). Antioxidant properties of two apple cultivars during long-term storage. Food Chemistry, 80, 303–307. DOI: 10.1016/S0308-8146(02)00263-7.CrossRefGoogle Scholar
- Meszka, B., & Bielenin, A. (2006). Effect of saprotrophic microorganisms on the development of Venturia inaequalis pseudothecia. Zeszyty Naukowe Instytutu Sadownictwa i Kwiaciarstwa, 14. (in Polish).Google Scholar
- Mikulič Petkovšek, M. M., Štampar, F., & Veberič, R. (2009). Changes in the inner quality parameters of apple fruit from technological to edible maturity. Acta Agriculturae Slovenica, 93, 17–29. DOI: 10.2478/v10014-009-0003-3.CrossRefGoogle Scholar
- Montealegre, R. R., Peces, R. R., Vozmediano, J. L. C., Gascueña, J. M., & Romero, E. G. (2006). Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. Journal of Food Composition and Analysis, 19, 687–693. DOI: 10.1016/j.jfca.2005.05.003.CrossRefGoogle Scholar
- Napolitano, A., Cascone, A., Graziani, G., Ferracane, R., Scalfi, L., Di Vaio, C., Ritieni, A., & Fogliano, V. (2004). Influence of variety and storage on the polyphenol composition of apple flesh. Journal of Agricultural and Food Chemistry, 52, 6526–6531. DOI: 10.1021/jf049822w.CrossRefGoogle Scholar
- Saito, S. T., Fröehlich, P. E., Gosmann, G., & Bergold, A. M. (2007). Full validation of a simple method for determination of catechins and caffeine in Brazilian green tea (Camellia sinensis var. assamica) using HPLC. Chromatographia, 65, 607–610. DOI: 10.1365/s10337-007-0190-1.Google Scholar
- van der Sluis, A. A., Dekker, M., de Jager, A., & Jongen, W. M. F. (2001). Activity and concentration of polyphenolic antioxidants in apple: Effect of cultivar, harvest year, and storage conditions. Journal of Agricultural and Food Chemistry, 49, 3606–3613. DOI: 10.1021/jf001493u.CrossRefGoogle Scholar
- Spanos, G. A., Wrolstad, R. E., & Heatherbell, D. A. (1990). Influence of processing and storage on the phenolic composition of apple juice. Journal of Agricultural and Food Chemistry, 38, 1572–1579. DOI: 10.1021/jf00097a031.CrossRefGoogle Scholar
- Vallés, B. S., Victorero, J. S., Alonso, J. J. M., & Gomis, D. B. (1994). High-performance liquid chromatography of the neutral phenolic compounds of low molecular weight in apple juice. Journal of Agricultural and Food Chemistry, 42, 2732–2736. DOI: 10.1021/jf00048a016.CrossRefGoogle Scholar
- Vrhovsek, U., Rigo, A., Tonon, D., & Mattivi, F. (2004). Quantitation of polyphenols in different apple varieties. Journal of Agricultural and Food Chemistry, 52, 6532–6538. DOI: 10.1021/jf049317z.CrossRefGoogle Scholar
Copyright information
© Institute of Chemistry, Slovak Academy of Sciences 2010