Advertisement

Chemical Papers

, 62:364 | Cite as

Comparison of different technologies for alginate beads production

  • Ulf PrüsseEmail author
  • Luca Bilancetti
  • Marek Bučko
  • Branko Bugarski
  • Jozef Bukowski
  • Peter Gemeiner
  • Dorota Lewińska
  • Verica Manojlovic
  • Benjamin Massart
  • Claudio Nastruzzi
  • Viktor Nedovic
  • Denis Poncelet
  • Swen Siebenhaar
  • Lucien Tobler
  • Azzurra Tosi
  • Alica Vikartovská
  • Klaus-Dieter Vorlop
Original Paper

Abstract

This paper describes the results of the round robin experiment “Bead production technologies” carried out during the COST 840 action “Bioencapsulation Innovation and Technologies” within the 5th Framework Program of the European Community. In this round robin experiment, calcium alginate hydrogel beads with the diameter of (800 ± 100) μm were produced by the most common bead production technologies using 0.5–4 mass % sodium alginate solutions as starting material. Dynamic viscosity of the alginate solutions ranged from less than 50 mPa s up to more than 10000 mPa s. With the coaxial air-flow and electrostatic enhanced dropping technologies as well as with the JetCutter technology in the soft-landing mode, beads were produced from all alginate solutions, whereas the vibration technology was not capable to process the high-viscosity 3 % and 4 % alginate solutions. Spherical beads were generated by the electrostatic and the JetCutter technologies. Slightly deformed beads were obtained from high-viscosity alginate solutions using the coaxial airflow and from the 0.5 % and 2 % alginate solutions using the vibration technology. The rate of bead production using the JetCutter was about 10 times higher than with the vibration technology and more than 10000 times higher than with the coaxial air-flow and electrostatic technology.

Keywords

droplet generation coaxial air-flow electrostatic vibration JetCutter alginate beads 

References

  1. Anilkumar, A. V., Lacík, I., & Wang, T. G. (2001). A novel reactor for making uniform capsules. Biotechnology and Bioengineering, 75, 581–589. DOI: 10.1002/bit.10077.CrossRefGoogle Scholar
  2. Brandenberger, H., & Widmer, F. (1998). A new multinozzle encapsulation/immobilisation system to produce uniform beads of alginate. Journal of Biotechnology, 63, 73–80. DOI: 10.1016/S0168-1656(98)00077-7.CrossRefGoogle Scholar
  3. Bučko, M., Vikartovská, A., Lacík, I., Kolláriková, G., Gemeiner, P., Pätoprstý, V., & Brygin, M. (2005). Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enzyme and Microbial Technology, 36, 118–126. DOI: 10.1016/j.enzmictec.2004.07.006.CrossRefGoogle Scholar
  4. Bugarski, B., Li, Q. L., Goosen, M. F. A., Poncelet, D., Neufeld, R. J., & Vunjak, G. (1994). Electrostatic droplet generation: Mechanism of polymer droplet formation. AIChE Journal, 40, 1026–1031. DOI: 10.1002/aic.690400613.CrossRefGoogle Scholar
  5. Bugarski, B., Obradovic, B., Nedovic, V., & Poncelet, D. (2004). Immobilization of cells and enzymes using electrostatic droplet generation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 277–294). Dordrecht: Kluwer Academic Publishers.Google Scholar
  6. Heinzen, C., Berger, A., & Marison, I. (2004). Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 257–275). Dordrecht: Kluwer Academic Publishers.Google Scholar
  7. Heinzen, C., Marison, I., Berger, A., & von Stockar, U. (2002). Use of vibration technology for jet break-up for encapsulation of cells, microbes and liquids in monodisperse microcapsules. Landbauforschung Völkenrode, SH241, 19–25.Google Scholar
  8. Lacík, I., Briššová, M., Anilkumar, A. V., Powers, A. C., and Wang, T. (1998). New capsule with tailored properties for the encapsulation of living cells. Journal of Biomedical Materials Research, 39, 52–60. DOI: 10.1002/(SICI)1097-4636(199801)39:1〈52::AID-JBM7〉3.0.CO;2-H.CrossRefGoogle Scholar
  9. Lewińska, D., Rosiński, S., & Weryński, A. (2004). Influence of process conditions during impulsed electrostatic droplet formation on size distribution of hydrogel beads. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 32, 41–53. DOI: 10.1081/BIO-120028667.CrossRefGoogle Scholar
  10. Manojlovic, V., Djonlagic, J., Obradovic, B., Nedovic, V., & Bugarski, B. (2006). Investigations of cell immobilization in alginate: rheological and electrostatic extrusion studies. Journal of Chemical Technology and Biotechnology, 81, 505–510. DOI: 10.1002/jctb.1465.CrossRefGoogle Scholar
  11. Melvik, J. E., & Dornish, M. (2004). Alginate as a carrier for cell immobilisation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 33–51). Dordrecht: Kluwer Academic Publishers.Google Scholar
  12. Nedovic, V., Obradovic, B., Poncelet, D., Goosen, M. F. A., Leskosek-Cukalovic, I., & Bugarski, B. (2002). Cell immobilisation by electrostatic droplet generation. Landbauforschung Völkenrode, SH241, 11–17.Google Scholar
  13. Neufeld, R. J., & Poncelet, D. (2004). Industrial scale encapsulation of cells using emulsification/dispersion technologies. In V Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 311–325). Dordrecht: Kluwer Academic Publishers.Google Scholar
  14. Ogbonna, J. C. (2004). Atomisation techniques for immobilisation of cells in micro gel beads. In V Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 327–341). Dordrecht: Kluwer Academic Publishers.Google Scholar
  15. Poncelet, D., Babak, V. G., Neufeld, R. J., Goosen, M. F. A, & Bugarski, B. (1999a). Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Advances in Colloid and Interface Science, 79, 213–228. DOI: 10.1016/S0001-8686(97)00037-7.CrossRefGoogle Scholar
  16. Poncelet, D., Bugarski, B., Amsden, B. G., Zhu, J., Neufeld, R., & Goosen, M. F. A. (1994). A parallel-plate electrostatic droplet generator — Parameters affecting microbead size. Applied Microbiology and Biotechnology, 42, 251–255. DOI: 10.1007/BF00902725.CrossRefGoogle Scholar
  17. Poncelet, D., Neufeld, R. J., Goosen, M. F. A, Burgarski, B., & Babak, V. (1999b). Formation of microgel beads by electric dispersion of polymer solutions. AIChE Journal, 45, 2018–2023. DOI: 10.1002/aic.690450918.CrossRefGoogle Scholar
  18. Poncelet, D., Teunou, E., Desrumaux, A., & Della Valle, D. (2002). Emulsification and microencapsulation: State of art. Landbauforschung Völkenrode, SH241, 27–31.Google Scholar
  19. Prüsse, U., Dalluhn, J., Breford, J., & Vorlop, K.-D. (2000). Production of spherical beads by JetCutting. Chemical Engineering & Technology, 23, 1105–1110. DOI: 10.1002/1521-4125(200012)23:12〈1105::AID-CEAT1105〉3.0.CO;2-V.CrossRefGoogle Scholar
  20. Prüsse, U., Jahnz, U., Wittlich, P., Breford, J., & Vorlop, K.-D. (2002). Bead production with JetCutting and rotating disc/nozzle technologies. Landbauforschung Völkenrode, SH241, 1–10.Google Scholar
  21. Prüsse, U., & Vorlop, K.-D. (2004). The JetCutter technology. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 295–309). Dordrecht: Kluwer Academic Publishers.Google Scholar
  22. Rosiński, S., Lewińska, D., Migaj, M., Wozniewicz, B., Weryński, A. (2002). Electrostatic microencapsulation of parathyroid cells as a tool for the investigation of cell’s activity after transplantation. Landbauforschung Völkenrode, SH241, 47–50.Google Scholar
  23. Schwinger, C., Koch, S., Jahnz, U., Wittlich, P., Rainov, N. G., Kressler, J. (2002). High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. Journal of Microencapsulation, 19, 273–280. DOI: 10.1080/02652040110105328.CrossRefGoogle Scholar
  24. Strand, B. L., Skjak-Braek, G., & Gaserod, O. (2004). Microcapsule formulation and formation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 165–183). Dordrecht: Kluwer Academic Publishers.Google Scholar
  25. Vorlop, K.-D., & Klein, J. (1983). New developments in the field of cell immobilization — Formation of biocatalysts by ionotropic gelation. In R. M. Lafferty, & E. Maier (Eds.), Enzyme technology (pp. 221–235). Berlin: Springer.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2008

Authors and Affiliations

  • Ulf Prüsse
    • 1
    Email author
  • Luca Bilancetti
    • 2
  • Marek Bučko
    • 3
  • Branko Bugarski
    • 4
  • Jozef Bukowski
    • 5
  • Peter Gemeiner
    • 3
  • Dorota Lewińska
    • 5
  • Verica Manojlovic
    • 4
  • Benjamin Massart
    • 6
  • Claudio Nastruzzi
    • 2
  • Viktor Nedovic
    • 7
  • Denis Poncelet
    • 8
  • Swen Siebenhaar
    • 9
  • Lucien Tobler
    • 8
  • Azzurra Tosi
    • 2
  • Alica Vikartovská
    • 3
  • Klaus-Dieter Vorlop
    • 1
  1. 1.Institute of Agricultural Technology and Biosystems EngineeringJohan Heinrich von Thunen-Insitute (vTI)BraunschweigGermany
  2. 2.Department of Chemistry and Technology of DrugsUniversity of PerugiaPerugiaItaly
  3. 3.Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesBratislavaSlovakia
  4. 4.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  5. 5.Institute of Biocybernetics and Biomedical EngineeringPolish Academy of SciencesWarsawPoland
  6. 6.Institute MeuriceBrusselsBelgium
  7. 7.Faculty of AgricultureUniversity of BelgradeZemunSerbia
  8. 8.ENITIIANantesFrance
  9. 9.geniaLab GmbHBraunschweigGermany

Personalised recommendations