Skip to main content

Advertisement

Log in

Comparison of different technologies for alginate beads production

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This paper describes the results of the round robin experiment “Bead production technologies” carried out during the COST 840 action “Bioencapsulation Innovation and Technologies” within the 5th Framework Program of the European Community. In this round robin experiment, calcium alginate hydrogel beads with the diameter of (800 ± 100) μm were produced by the most common bead production technologies using 0.5–4 mass % sodium alginate solutions as starting material. Dynamic viscosity of the alginate solutions ranged from less than 50 mPa s up to more than 10000 mPa s. With the coaxial air-flow and electrostatic enhanced dropping technologies as well as with the JetCutter technology in the soft-landing mode, beads were produced from all alginate solutions, whereas the vibration technology was not capable to process the high-viscosity 3 % and 4 % alginate solutions. Spherical beads were generated by the electrostatic and the JetCutter technologies. Slightly deformed beads were obtained from high-viscosity alginate solutions using the coaxial airflow and from the 0.5 % and 2 % alginate solutions using the vibration technology. The rate of bead production using the JetCutter was about 10 times higher than with the vibration technology and more than 10000 times higher than with the coaxial air-flow and electrostatic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anilkumar, A. V., Lacík, I., & Wang, T. G. (2001). A novel reactor for making uniform capsules. Biotechnology and Bioengineering, 75, 581–589. DOI: 10.1002/bit.10077.

    Article  CAS  Google Scholar 

  • Brandenberger, H., & Widmer, F. (1998). A new multinozzle encapsulation/immobilisation system to produce uniform beads of alginate. Journal of Biotechnology, 63, 73–80. DOI: 10.1016/S0168-1656(98)00077-7.

    Article  CAS  Google Scholar 

  • Bučko, M., Vikartovská, A., Lacík, I., Kolláriková, G., Gemeiner, P., Pätoprstý, V., & Brygin, M. (2005). Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enzyme and Microbial Technology, 36, 118–126. DOI: 10.1016/j.enzmictec.2004.07.006.

    Article  CAS  Google Scholar 

  • Bugarski, B., Li, Q. L., Goosen, M. F. A., Poncelet, D., Neufeld, R. J., & Vunjak, G. (1994). Electrostatic droplet generation: Mechanism of polymer droplet formation. AIChE Journal, 40, 1026–1031. DOI: 10.1002/aic.690400613.

    Article  Google Scholar 

  • Bugarski, B., Obradovic, B., Nedovic, V., & Poncelet, D. (2004). Immobilization of cells and enzymes using electrostatic droplet generation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 277–294). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Heinzen, C., Berger, A., & Marison, I. (2004). Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 257–275). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Heinzen, C., Marison, I., Berger, A., & von Stockar, U. (2002). Use of vibration technology for jet break-up for encapsulation of cells, microbes and liquids in monodisperse microcapsules. Landbauforschung Völkenrode, SH241, 19–25.

  • Lacík, I., Briššová, M., Anilkumar, A. V., Powers, A. C., and Wang, T. (1998). New capsule with tailored properties for the encapsulation of living cells. Journal of Biomedical Materials Research, 39, 52–60. DOI: 10.1002/(SICI)1097-4636(199801)39:1〈52::AID-JBM7〉3.0.CO;2-H.

    Article  Google Scholar 

  • Lewińska, D., Rosiński, S., & Weryński, A. (2004). Influence of process conditions during impulsed electrostatic droplet formation on size distribution of hydrogel beads. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 32, 41–53. DOI: 10.1081/BIO-120028667.

    Article  CAS  Google Scholar 

  • Manojlovic, V., Djonlagic, J., Obradovic, B., Nedovic, V., & Bugarski, B. (2006). Investigations of cell immobilization in alginate: rheological and electrostatic extrusion studies. Journal of Chemical Technology and Biotechnology, 81, 505–510. DOI: 10.1002/jctb.1465.

    Article  CAS  Google Scholar 

  • Melvik, J. E., & Dornish, M. (2004). Alginate as a carrier for cell immobilisation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 33–51). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Nedovic, V., Obradovic, B., Poncelet, D., Goosen, M. F. A., Leskosek-Cukalovic, I., & Bugarski, B. (2002). Cell immobilisation by electrostatic droplet generation. Landbauforschung Völkenrode, SH241, 11–17.

  • Neufeld, R. J., & Poncelet, D. (2004). Industrial scale encapsulation of cells using emulsification/dispersion technologies. In V Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 311–325). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Ogbonna, J. C. (2004). Atomisation techniques for immobilisation of cells in micro gel beads. In V Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 327–341). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Poncelet, D., Babak, V. G., Neufeld, R. J., Goosen, M. F. A, & Bugarski, B. (1999a). Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Advances in Colloid and Interface Science, 79, 213–228. DOI: 10.1016/S0001-8686(97)00037-7.

    Article  CAS  Google Scholar 

  • Poncelet, D., Bugarski, B., Amsden, B. G., Zhu, J., Neufeld, R., & Goosen, M. F. A. (1994). A parallel-plate electrostatic droplet generator — Parameters affecting microbead size. Applied Microbiology and Biotechnology, 42, 251–255. DOI: 10.1007/BF00902725.

    Article  CAS  Google Scholar 

  • Poncelet, D., Neufeld, R. J., Goosen, M. F. A, Burgarski, B., & Babak, V. (1999b). Formation of microgel beads by electric dispersion of polymer solutions. AIChE Journal, 45, 2018–2023. DOI: 10.1002/aic.690450918.

    Article  CAS  Google Scholar 

  • Poncelet, D., Teunou, E., Desrumaux, A., & Della Valle, D. (2002). Emulsification and microencapsulation: State of art. Landbauforschung Völkenrode, SH241, 27–31.

  • Prüsse, U., Dalluhn, J., Breford, J., & Vorlop, K.-D. (2000). Production of spherical beads by JetCutting. Chemical Engineering & Technology, 23, 1105–1110. DOI: 10.1002/1521-4125(200012)23:12〈1105::AID-CEAT1105〉3.0.CO;2-V.

    Article  Google Scholar 

  • Prüsse, U., Jahnz, U., Wittlich, P., Breford, J., & Vorlop, K.-D. (2002). Bead production with JetCutting and rotating disc/nozzle technologies. Landbauforschung Völkenrode, SH241, 1–10.

  • Prüsse, U., & Vorlop, K.-D. (2004). The JetCutter technology. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 295–309). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Rosiński, S., Lewińska, D., Migaj, M., Wozniewicz, B., Weryński, A. (2002). Electrostatic microencapsulation of parathyroid cells as a tool for the investigation of cell’s activity after transplantation. Landbauforschung Völkenrode, SH241, 47–50.

  • Schwinger, C., Koch, S., Jahnz, U., Wittlich, P., Rainov, N. G., Kressler, J. (2002). High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. Journal of Microencapsulation, 19, 273–280. DOI: 10.1080/02652040110105328.

    Article  CAS  Google Scholar 

  • Strand, B. L., Skjak-Braek, G., & Gaserod, O. (2004). Microcapsule formulation and formation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 165–183). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Vorlop, K.-D., & Klein, J. (1983). New developments in the field of cell immobilization — Formation of biocatalysts by ionotropic gelation. In R. M. Lafferty, & E. Maier (Eds.), Enzyme technology (pp. 221–235). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Prüsse.

Additional information

In memory of our colleague Stefan Rosinski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prüsse, U., Bilancetti, L., Bučko, M. et al. Comparison of different technologies for alginate beads production. Chem. Pap. 62, 364–374 (2008). https://doi.org/10.2478/s11696-008-0035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0035-x

Keywords

Navigation