Advertisement

Chemical Papers

, Volume 61, Issue 4, pp 271–275 | Cite as

Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods

  • J. Sysalová
  • J. Száková
Article

Abstract

The modified BCR three-step sequential extraction procedure has been applied to homogenized urban dust samples and to simulated air filters loaded with the prepared urban dust via the wet deposition procedure. This work has been focused on comparative study of the distribution of trace elements in both samples and evaluation of the factors influencing the reliability of results with respect to the proposed extraction procedure. Extracted chemical fractions were analyzed by ICP-OES and GFAAS depending on the concentration levels of investigated trace elements As, Cd, Cr, Mn, Ni, and Pb, selected according to their adverse effect on the human health. Statistically evaluated results indicate significant differences between the extracted portions of analytes in urban dust and simulated air filters, where the mobility of some analytes in simulated air filters was higher than that in urban dust samples. The impact of surfactant Triton X-100 (0.05 vol. %) on the extraction procedure was also investigated.

Keywords

sequential extraction trace elements urban dust air filter ICP-OES GFAAS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The System of Monitoring of the Environmental Impact on the Population Health in the Czech Republic, Project 1. National Institute of Public Health, Prague, 1994.Google Scholar
  2. 2.
    Smichowski, P., Polla, G., and Gómez, D., Anal. Bioanal. Chem. 381, 302 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    Heller-Zeisler, S. F., Falgelj, A., Bernasconi, G., Tajani, A., and Zeisler, R., Fresenius J. Anal. Chem. 360, 435 (1998).CrossRefGoogle Scholar
  4. 4.
    Sysalová, J., Kučera, J., Kotlík, B., and Havránek, V., Anal. Bioanal. Chem. 373, 195 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    Sysalová, J. and Száková, J., Environ. Res. 101, 287 (2006).PubMedCrossRefGoogle Scholar
  6. 6.
    Kučera, J., Parr, R. M., Smodiš, B., Falgelj, A., Mattiuzzi, M., and Havránek, V., J. Radioanal. Nucl. Chem. 244, 121 (2000).CrossRefGoogle Scholar
  7. 7.
    Kučera, J., Smodiš, B., Burns, K., De Regge, P., Campbell, M., Havránek, V., Makarewicz, M., Toervenyi, A., and Zeiller, E., Fresenius J. Anal. Chem. 370, 229 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    Mulligan, C. N., Yong, R. N., and Gibbs, B. F., Eng. Geol. 60, 371 (2001).CrossRefGoogle Scholar
  9. 9.
    Hong, K. J., Tokunaga, S., Ishigami, Y., and Kajiuchi, T., Chemosphere 41, 345 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, S. and Mulligan, C. N., Water, Air, Soil Pollut. 157, 315 (2004).CrossRefGoogle Scholar
  11. 11.
    Shin, M. and Barrington, S., Water, Air, Soil Pollut. 161, 193 (2005).CrossRefGoogle Scholar
  12. 12.
    Di Gregorio, S., Barbafieri, M., Lampis, S., Sanangelantoni, A. M., Tassi, E., and Vallini, G., Chemosphere 63, 293 (2006).PubMedCrossRefGoogle Scholar
  13. 13.
    Paria, S., Manohar, C., and Khilar, K. C., Colloids Surf., A 252, 221 (2005).CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2007

Authors and Affiliations

  1. 1.AAS LaboratoryInstitute of Chemical TechnologyPrague 6Czech Republic
  2. 2.Department of Agrochemistry and Plant NutritionCzech University of AgriculturePrague 6-SuchdolCzech Republic

Personalised recommendations