Advertisement

Chemical Papers

, Volume 61, Issue 2, pp 83–92 | Cite as

The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics

  • R. Greenwood
  • B. Lapčíková
  • M. Surýnek
  • K. Waters
  • L. LapčíkJr.
Article

Abstract

The zeta potentials of kaolin dilute and concentrated suspensions were monitored using the techniques of electrophoresis and electroacoustics, respectively. The effect of addition of salt (KCl), a polymer material (Triton X-100), and an anionic surfactant (sodium dodecyl sulphate, SDS) on the suspension properties was investigated by electrophoresis. Electroacoustics was employed for the measurement of zeta potentials for the highest possible kaolin content in suspension and the effect of dilution. The effect of aging of a freshly prepared sample and kaolin isoelectric point was also studied. Using both techniques it was noted that there was no isoelectric point, just a maximum value in the magnitude of the kaolin suspension zeta potential. These maxima were observed also in the presence of Triton X-100 and SDS. An increase of the concentration of KCl and SDS in suspension shifted the maxima towards more acidic values, while in the presence of Triton X-100 the position of the zeta potential maxima remained constant. Electroacoustic techniques revealed that a freshly prepared concentrated suspension requires about six hours to equilibrate to achieve a steady zeta potential. Diluting the concentrated suspensions led to decrease of the zeta potential as ions bound to the surface desorbed and screened the surface charge. The zeta potential maxima remained unchanged even after heating the powder in an oven at 200°C (to remove any organic material) thereby suggesting that the most likely explanation for the maxima is isomorphic substitution.

Keywords

kaolinite kaolin concentrated aqueous suspensions electrophoresis electroacoustics zeta potential isomorphic substitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnson, S. B., Dixon, D. R., and Scales, P. J., Colloids Surf., A 146, 281 (1999).CrossRefGoogle Scholar
  2. 2.
    Lapčík, L., Alince, B., and van de Ven, T. G. M., J. Pulp Pap. Sci. 21, J19 (1995).Google Scholar
  3. 3.
    Rice, B. P., Chen, C. G., Cloos, L., and Curliss, D., SAMPE J. 37, 7 (2001).Google Scholar
  4. 4.
    Chen, C. G. and Curliss, D., SAMPE J. 37, 11 (2001).Google Scholar
  5. 5.
    Jama, C. and Delobel, R., in Proceedings of ICCE-12, Tenerife, Spain, 2005.Google Scholar
  6. 6.
    Martínez-Vilariño, S., Hui, D., Miller, S. G., and Daniel, L., in Proceedings of ICCE-12, Tenerife, Spain, 2005.Google Scholar
  7. 7.
    Ophir, A., Dotan, A., Dodiuk, H., Belinsly, I., and Kenig, S., in Proceedings of ICCE-12, Tenerife, Spain, 2005.Google Scholar
  8. 8.
    O’Brien, R. W., J. Fluid Mech. 212, 81 (1990).CrossRefGoogle Scholar
  9. 9.
    O’Brien, R. W., Midmore, B. R., Lamb, A., and Hunter, R. J., Faraday Discuss. Chem. Soc. 90, 301 (1990).CrossRefGoogle Scholar
  10. 10.
    O’Brien, R. W., J. Colloid Interface Sci. 171, 495 (1995).CrossRefGoogle Scholar
  11. 11.
    Hunter, R. J., Colloids Surf., A 141, 37 (1998).CrossRefGoogle Scholar
  12. 12.
    Greenwood, R., Adv. Colloid Interface Sci. 106, 55 (2003).CrossRefGoogle Scholar
  13. 13.
    www.colloidal-dynamics.com. Application note.Google Scholar
  14. 14.
    O’Brien, R. W. and Rowlands, W. N., J. Colloid Interface Sci. 159, 471 (1993).CrossRefGoogle Scholar
  15. 15.
    Rowlands, W. N. and O’Brien, R. W., J. Colloid Interface Sci. 175, 190 (1995).CrossRefGoogle Scholar
  16. 16.
    Hunter, R. J. and James, M., Clays Clay Miner. 40, 644 (1992).CrossRefGoogle Scholar
  17. 17.
    Mpofu, P., Addai-Mensah, J., and Ralston, J., J. Colloid Interface Sci. 271, 145 (2004).CrossRefGoogle Scholar
  18. 18.
    Mpofu, P., Addai-Mensah, J., and Ralston, J., Int. J. Miner. Process. 71, 247 (2003).CrossRefGoogle Scholar
  19. 19.
    Mpofu, P., Addai-Mensah, J., and Ralston, J., J. Colloid Interface Sci. 261, 349 (2003).CrossRefGoogle Scholar
  20. 20.
    Angove, M. J., Wells, J. D., and Johnson, B. B., Colloids Surf., A 146, 243 (1999).CrossRefGoogle Scholar
  21. 21.
    Taylor, M. L., Morris, G. E., Self, P. G., and Smart, R. S., J. Colloid Interface Sci. 250, 28 (2002).CrossRefGoogle Scholar
  22. 22.
    Janek, M. and Lagaly, G., Colloid Polym. Sci. 281, 293 (2003).CrossRefGoogle Scholar
  23. 23.
    Hunter, R. J. and Alexander, A. E., J. Colloid Sci. 18, 820 (1963).CrossRefGoogle Scholar
  24. 24.
    Williams, D. J. A. and Williams, K. P., J. Colloid Interface Sci. 65, 79 (1978).CrossRefGoogle Scholar
  25. 25.
    Kretzschmar, R., Holthoff, H., and Sandticher, H., J. Colloid Interface Sci. 202, 95 (1998).CrossRefGoogle Scholar
  26. 26.
    Kaya, A. and Yukselen, Y., J. Hazard. Mater. 120, 119 (2005).CrossRefGoogle Scholar
  27. 27.
    Yukselen, Y. and Kaya, A., Water, Air, Soil Pollut. 145, 155 (2003).CrossRefGoogle Scholar
  28. 28.
    Kaya, A. and Yukselen, Y., Can. Geotech. J. 42, 1280 (2005).CrossRefGoogle Scholar
  29. 29.
    Tekin, N., Demirbas, O., and Alkan, M., Microporous Mesoporous Mater. 85, 340 (2005).CrossRefGoogle Scholar
  30. 30.
    Olhoeft, G. R., Tables of Room Temperature Electrical Properties for Selected Rocks and Minerals with Dielectric Permittivity Statistics, p. 24. US Geological Survey Open File Report 77-993, 1979.Google Scholar
  31. 31.
    Hussain, S. A., Demirci, S., and Ozbayoglu, G., J. Colloid Interface Sci. 184, 535 (1996).CrossRefGoogle Scholar
  32. 32.
    Greenwood, R. and Bergström, L., J. Eur. Ceram. Soc. 17, 537 (1997).CrossRefGoogle Scholar
  33. 33.
    Alkan, M., Demirbas, O., and Dogan, M., Microporous Mesoporous Mater. 83, 51 (2005).CrossRefGoogle Scholar
  34. 34.
    Ferris, A. P. and Jepson, W. B., J. Colloid Interface Sci. 51, 245 (1975).CrossRefGoogle Scholar
  35. 35.
    Waters, K. E., Greenwood, R. W., Rowson, N. A., Lapčík, L., Jr., and Lapčíková, B., Paper No. 159E, World Congress on Particle Technology 5. Orlando, Florida, 2006.Google Scholar
  36. 36.
    Torres-Sanchez, R. M., Basaldella, E. I., and Marco, J. F., J. Colloid Interface Sci. 215, 339 (1999).CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2007

Authors and Affiliations

  • R. Greenwood
    • 1
  • B. Lapčíková
    • 2
  • M. Surýnek
    • 2
  • K. Waters
    • 1
  • L. LapčíkJr.
    • 2
  1. 1.Chemical EngineeringUniversity of BirminghamEdgbaston, BriminghamUK
  2. 2.Department of Physics and Materials EngineeringTomas Bata University in ZlínZlínCzech Republic

Personalised recommendations