Chemical Papers

, Volume 60, Issue 3, pp 173–178 | Cite as

Calibrationless determination of electroactive species using chronoamperograms at collector segment of interdigitated microelectrode array

  • P. Jenčušová
  • P. TomčíkEmail author
  • D. Bustin
  • M. Rievaj
  • Z. Dovalovská


The possibility of calibrationless chronoamperometric determination is described using a pair of individually addressable and diffusion layers interacting segments of interdigitated microelectrode array (IDA). It utilizes dual voltammetric mode where the first segment is polarized with potential corresponding to the limiting current of determined species electrode reaction and the second segment is polarized with potential corresponding to the opposite electrode reaction limiting current. Time at which the current of the collector segment reaches one half of the steady state is hyperbolically dependent on the diffusion coefficient of analyte. The determination of diffusion coefficient allows direct calculation of bulk concentration avoiding calibration with a standard solution. The equipment for measuring of fast response of IDA arrays in dual mode has been developed using a bipotentiostat connected with A/D transducer. It allows less than 1 ms sampling period for ultrafast registration of chronoamperogram. The method was tested and validated with [Fe(CN)6]4−, [Ru(NH3)6]Cl3, and ferrocene model samples using various types of IDA arrays.


Ferrocene Dual Mode Microelectrode Array Electroactive Species Potassium Hexacyanoferrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amatore, C. A., Deakin, M. R., and Wightman, R. M., J. Electroanal. Chem. 206, 23 (1986).CrossRefGoogle Scholar
  2. 2.
    Horiuchi, T., Niwa, O., Morita, M., and Tabei, H., J. Electrochem. Soc. 138, 3549 (1991).CrossRefGoogle Scholar
  3. 3.
    Tomčík, P. and Bustin, D., Fresenius J. Anal. Chem. 371, 562 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    Johnson, P. C., Weber, S. G., Wightman, R. M., Shoup, R. E., and Krull, I. S., Anal. Chim. Acta 180, 187 (1986).CrossRefGoogle Scholar
  5. 5.
    Roston, D. A., Shoup, R. E., and Kissinger, P. T., Anal. Chem. 54, 1417 A (1982).CrossRefGoogle Scholar
  6. 6.
    Bustin, D., Mesároš, Š., Tomčík, P., Rievaj, M., and Tvarožek, V., Anal. Chim. Acta 305, 121 (1995).CrossRefGoogle Scholar
  7. 7.
    Tomčík, P., Jursa, S., Mesároš, Š., and Bustin, D., J. Electroanal. Chem. 423, 115 (1997).CrossRefGoogle Scholar
  8. 8.
    Tomčík, P., Krajčíková, M., and Bustin, D., Talanta 55, 1065 (2001).CrossRefGoogle Scholar
  9. 9.
    Tomčík, P., Mesároš, Š., and Bustin, D., Anal. Chim. Acta 374, 283 (1998).CrossRefGoogle Scholar
  10. 10.
    Tomčík, P., Krajčíková, M., Bustin, D., and Skačáni, I., Electrochem. Commun. 3, 191 (2001).CrossRefGoogle Scholar
  11. 11.
    Bustin, D., Chem. Pap. 41, 203 (1987).Google Scholar
  12. 12.
    Bustin, D., Mesároš, Š., Rievaj, M., and Tomčík, P., Electroanalysis (N. Y.) 7, 329 (1995).CrossRefGoogle Scholar
  13. 13.
    Bustin, D., Chem. Pap. 41, 214 (1987).Google Scholar
  14. 14.
    Aoki, K. and Tanaka, M., J. Electroanal. Chem. 266, 11 (1989).CrossRefGoogle Scholar
  15. 15.
    Niwa, O., Morita, M., and Tabei, H., Anal. Chem. 62, 447 (1990).CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2006

Authors and Affiliations

  • P. Jenčušová
    • 1
  • P. Tomčík
    • 1
    Email author
  • D. Bustin
    • 1
  • M. Rievaj
    • 1
  • Z. Dovalovská
    • 1
  1. 1.Institute of Analytical Chemistry, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations