Acta Parasitologica

, Volume 57, Issue 3, pp 228–234 | Cite as

Status of lipid peroxidation and antioxidant enzymes in goats naturally infected with Babesia ovis

  • Bijan Esmaeilnejad
  • Mousa Tavassoli
  • Siamak Asri-Rezaei
  • Bahram Dalir-Naghadeh
  • Hassan Malekinejad
Original Paper


This study aimed to assess lipid peroxidation and antioxidant enzymes in goats naturally infected with Babesia ovis. Red blood cell count (RBC), hemoglobin (Hb) concentration, packed cell volume (PCV), malondialdehyde (MDA) concentration, erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) activities and total antioxidant capacity (TAC) were determined in 15 goats naturally infected with B. ovis as well as same number of healthy goats. The parasitological diagnosis was confirmed using polymerase chain reaction (PCR) analysis by amplifying a partial 18S rRNA gene sequence of B. ovis. Percentage of parasitemia varied from 0.01 to 1%. The activities of erythrocyte GSH-Px, SOD, CAT and TAC were significantly lower (p<0.05) in the infected goats than in healthy ones. MDA concentration in erythrocytes of infected goats was significantly higher in infected goats than in healthy ones (pš0.05). Severity of parasitemia showed a positive correlation with the MDA and negative correlation with PCV, SOD, CAT, GSH-Px and TAC. Also, MDA was negatively correlated with PCV, SOD, CAT, GSH-Px and TAC. The results of this study suggested that oxidative damage to RBCs may contribute to the pathogenesis of anemia in caprine babesiosis.


Babesia ovis goats oxidative stress antioxidants anemia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aktas M., Altay K., Dumanli N. 2005. Development of a polymerase chain reaction method for diagnosis of Babesia ovis infection in sheep and goats. Veterinary Parasitology, 133, 277–281. DOI: 10.1016/j.vetpar.2005.05.057.PubMedCrossRefGoogle Scholar
  2. Alkhalil A., Hill D.A., Desai S.A. 2007. Babesia and plasmodia increase host erythrocyte permeability through distinct mechanisms. Cellular Microbiology, 94, 815–860. DOI: 10.1111/j.1462-5822.2006.00834.x.Google Scholar
  3. Ambawat H.K., Malhotra D.V., Kumar S., Dhar S. 1999. Erythrocyte associated haemato-biochemical changes in Babesia equi infection experimentally produced in donkeys. Veerinary Parasitology, 85, 319–324. DOI: 10.1016/S0304-4017(99)00110-7.CrossRefGoogle Scholar
  4. Argon R.S. 1976. Bovine babesiosis: a review. Veterinary Bulletin, 46, 903–917.Google Scholar
  5. Asri-Rezaei S., Dalir-Naghadeh B. 2006. Evaluation of antioxidant status and oxidative stress in cattle naturally infected with Theileria annulata. Veterinary Parasitology, 142, 179–186. DOI: 10.1016/j.vetpar.2006.05.033.PubMedCrossRefGoogle Scholar
  6. Bicek K., Deger Y., Deger S. 2005. Some biochemical and haematological parameters of sheep infected with Babesia species. YuzuncuYil Universitise Veterinire Fakultisi Dergisi, 16, 33–35. DOI: Scholar
  7. Buranakarl C., Trisiriroj M., Pondeenana S., Tungjitpeanpony T., Jarutakanon P., Penchome R. 2009. Relationship between oxidative stress markers and red blood cell characteristics in renal azotemic dogs. Reseach in Veterinary Science, 86, 309–313. DOI: 10.1016/j.rvsc.2008.06.003.CrossRefGoogle Scholar
  8. Callow L.L., Pepper P.R. 1974. Measurement and correlation between fever, changes in the packed cell volume and parasitemia in the evaluation of the susceptibility of cattle to infection with Babesia argentina. Australian Veterinary Journal, 50, 1–5.PubMedCrossRefGoogle Scholar
  9. Chaudhuri S., Varshney J.P., Patra R.C. 2008. Erythrocytic antioxidant defense, lipid peroxidase level and blood iron, zinc and copper concentrations in dogs naturally infected with Babesia gibsoni. Research in Veterinary Science, 85, 120–124. DOI: 10.1016/j.rvsc.2007.09.001.PubMedCrossRefGoogle Scholar
  10. Chiwakata C.B., Hemmer Ch.J. Dietrich M. 2000. High level of nitric oxide synthase mRNA are associated with increased monocyte count in blood and have a beneficial role in Plasmodium falciparum malaria. Infection and Immunity, 68, 394–399. DOI: 0019-9567/00/$04.00+0.PubMedCrossRefGoogle Scholar
  11. Commins M.A., Gooder B.V., Waltisbuhi D.J., Wright I.G. 1988. Babesia bovis: studies of parameters influencing microvascular stasis of infected erythrocytes. Research in Veterinary Science, 44, 226–228.PubMedGoogle Scholar
  12. Court R.A., Jackson L.A., Lee R.P. 2001. Elevated anti-parasitic activity in peripheral blood monocytes and neutrophils of cattle infected with Babesia bovis. International Journal for Parasitology, 31, 29–37. DOI: 10.1016/S0020-7519 (00)00 144-2.PubMedCrossRefGoogle Scholar
  13. Crnogaj M., Petlevski R., Mrljk V., Kis I., Torti M., Kucer N., Matijatko V., Sacer I., Stokoic I. 2010. Malondialdehyde levels in serum of dogs infected with Babesia canis. Veterinarni Medicina, 55, 163–171. DOI: Scholar
  14. Deger S., Deger Y., Bicek K., Ozdal N., Gul A. 2009. Status of lipid peroxidation, antioxidant and oxidation products of nitric oxide equine babesiosis: Status of antioxidant and oxidant in equine babesiosis. Journal of Equine Veterinary Science, 29, 743–747. DOI: 10.1016/j.jevs.2009.07.014.CrossRefGoogle Scholar
  15. El-Deeb W.M., Younis E.E. 2009. Clinical and biochemical studies on Theileria annulata in Egyptian buffaloes (Bubalus bubalis) with particular orientation to oxidative stress and ketosis relationship. Veterinary Parasitology, 164, 301–305. DOI: 10.1016/j.vetpar.2009.06.002.PubMedCrossRefGoogle Scholar
  16. Erel O., Kocyigit A., Avci S., Aktepe N., Bulut V. 1997. Oxidative stress and antioxidant status of plasma and erythrocytes in patient with vivax malaria. Clinical Biochemistry, 30, 631–639. DOI: 10.1016/S0009-9120(97)00119-7.PubMedCrossRefGoogle Scholar
  17. Estrada-Pena A., Bouattour A., Camicas J.L., Walker A.R. 2004. Ticks of domestic animals in the Mediterranean region, a guide to identification of species. University of Zaragoza, Spain, 43-131 pp.Google Scholar
  18. Grewal A., Ahuja C.S., Singh S.P.S., Chaudhary K.C. 2005. Status of lipid peroxidation, some antioxidant enzymes and erythrocytic fragility of crossbred cattle naturally infected with Theileria annulata. Veterinary Research Communications, 29, 387–394. DOI: 10.1007/s11259-005-4682-x.PubMedCrossRefGoogle Scholar
  19. Habibi G.R., Hashemi-Fesharki R., Bordbar N. 2004. Detection of Babesia ovis using polymerase chain reaction. Archives of Razi Institute, 57, 1–10.Google Scholar
  20. Hafeman D.G., Sunde R.A., Hoekstra W.G. 1974. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in rat. Journal of Nutrition, 104, 580–587. DOI: 10.1002/jez. 1402250216.PubMedGoogle Scholar
  21. Harvey J.W. 1989. Erythrocyte metabolism. In: (Ed. Kaneko J.J.) Clinical Biochemistry of Domestic Animals. Academic Press, New York, 185–233.Google Scholar
  22. Kiral F., Karagenc T., Pasa S., Yenisey C., Seyrek K. 2005. Dogs with Hepatozoon canis respond to oxidative stress by increased production of glutathione and nitric oxide. Veterinary Parasitology, 131, 15–21. DOI: 10.1016/j.vetpar.2005.04.017.PubMedCrossRefGoogle Scholar
  23. Kumar A., Varshney J.P., Patra R.C. 2006. A comparative study on oxidative stress in dogs infected with Ehrlichia canis with or without concurrent infection with Babesia gibsoni. Veterinary Research Communications, 30, 917–920. DOI: 10.1007/s11259-006-3365-6.PubMedCrossRefGoogle Scholar
  24. Otsuko Y., Yamasaki M., Yamato O., Maede Y. 2001. Increased generation of superoxide in erythrocytes infected with Babesia gibsoni. Journal of Veterinary Medical Science, 63, 1077–1081. DOI: 10.1292/jvms.63.1077.CrossRefGoogle Scholar
  25. Rahbari S., Nabian S., Khaki Z., Alidadi N., Ashrafihelan J. 2008. Clinical, haematological and pathological aspects of experimental ovine babesiosis in Iran. Iranian Journal of Veterinary Research, 9, 59–64.Google Scholar
  26. Razmi G.R., Naghibi A., Aslani M.R., Fathivand M., Dastjerdi K. 2003. An epidemiological study on Babesia infection in small ruminants in Mashhad suburb, Khorasan province, Iran. Small Ruminant Research, 50, 39–44. DOI: 10.1016/s0921-4488 (03)00107.CrossRefGoogle Scholar
  27. Sahoo A., Patra R.C., Pathak N.N., Dwievedi S.K., Dash P.K. 2001. Enhanced lipid peroxide levels in the erythrocytes of calves with haemoglobinuria. Veterinary Research Communications, 25, 55–59.PubMedCrossRefGoogle Scholar
  28. Saleh M.A. 2009. Erythrocytic oxidative damage in crossbred cattle naturally infected with Babesia bigemina. Research in Veterinary Science, 86, 43–48. DOI: 10.1016/j.rvsc.05.005.PubMedCrossRefGoogle Scholar
  29. Sevinc F., Turgut K., Sevinc M., Ekici O.D., Coskun A., Koc Y., Erol M., Ica A. 2007. Therapeutic and prophylactic efficacy of imidocarb dipropionate on experimental Babesia ovis infection of lambs. Veterinary Parasitology, 149, 64–71. DOI: 10.1016/j.vetpar.2007.07.014.CrossRefGoogle Scholar
  30. Shiono H., Yagi Y., Chikayama Y., Miyazaki Sh., Nakamura I. 2003. Oxidative damage and phosphotidylserine expression of red blood cells in cattle experimentally infected with Theileria sergenti. Parasitology Research, 89, 228–234. DOI: 10.1007/s00436-002-0742-0.PubMedGoogle Scholar
  31. Shoda L.K.M., Palmer G.H., Florin-Christensen J., Florin-Christensen M., Godson D.L., Brown W.C. 2000. Babesia bovis-stimulated macrophages express interleukin-1β, interleukin-12, Tumor necrosis factor alpha, and nitric oxide and inhibit parasite replication in vitro. Infection and Immunity, 68, 5139–5145. DOI: 0019-9567/00/$04.0010.PubMedCrossRefGoogle Scholar
  32. Stich R.W., Shoda L.K.M., Dreewes M., Alder B., Jungi T.W., Brown W.C. 1998. Stimulation of nitric oxide production in macrophages by Babesia bovis. Infection and Immunity, 66, 4130–3136. DOI: 0019-9567/98/$04.00+0.PubMedGoogle Scholar
  33. Uilenberg G. 2006. Babesia-A historical overview. Veterinary Parasitology, 138, 3–10. DOI: 10.1016/j.vetpar.2006.01.035.PubMedCrossRefGoogle Scholar
  34. Varshney J.P., Varshney V.P., Oque M. 2003. Clinico-haematological, biochemical, endocrinological and ultrasonographic findings in canine babesiosis. Indian Journal of Animal Science, 73, 1099–1101.Google Scholar
  35. Yamasaki M., Otsuka Y., Yamato O., Tajima M., Maede Y. 2000. The cause of the predilection of Babesia gibsoni for reticulocytes. Journal of Veterinary Medical Science, 62, 737–741. DOI: 10.1292/jvms.62.737.PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Bijan Esmaeilnejad
    • 1
  • Mousa Tavassoli
    • 1
  • Siamak Asri-Rezaei
    • 2
  • Bahram Dalir-Naghadeh
    • 2
  • Hassan Malekinejad
    • 3
  1. 1.Department of Pathobiology, Faculty of Veterinary MedicineUrmia UniversityUrmiaIran
  2. 2.Departments of Clinical Sciences, Faculty of Veterinary MedicineUrmia UniversityUrmiaIran
  3. 3.Department of Basic SciencesFaculty of Veterinary MedicineUrmiaIran

Personalised recommendations