Acta Parasitologica

, Volume 57, Issue 1, pp 46–52 | Cite as

Fasciola hepatica miracidia: Lectin binding and stimulation of in vitro miracidium-to-sporocyst transformation

  • Katya Georgieva
  • Simona Georgieva
  • Yana Mizinska
  • Stoyanka R. Stoitsova
Article

Abstract

The lectin binding properties of Fasciola hepatica miracidia were studied by a panel of fluorescein- and gold-conjugated lectins (ConA, LCA, WGA, LEA, SBA, HPA and UEA-I). The presence of mannose and/or glucose residues was demonstrated with ConA and LCA as weak diffuse fluorescence of the miracidial surface, which was more intense at the anterior part of the larva. The N-acetylglucosamine-binding lectins WGA and LEA reacted intensely with the whole miracidial surface. No labelling with N-acetylgalactosamine and/or galactose-specific (SBA and HPA) and fucose-specific UEA-I lectins was observed. The possibility that the specific recognition of the miracidial surface carbohydrates by lectins may initiate the process of transformation of the miracidia into sporocysts was examined in vitro in physiological saline for Galba truncatula. Incubation in the presence of ConA and WGA resulted in facilitation of the transformation process. Facilitation was absent in the presence of inhibitor sugars. Incubation in the presence of SBA or UEA-I had no effect. The results suggested a possible impact of carbohydrate-lectin interactions in transformation of miracidia of F. hepatica to sporocysts in vivo.

Keywords

Fasciola hepatica miracidia lectin binding lectin-carbohydrate interactions in vitro miracidium-to-sporocyst transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coles G.C., Jansson H.B., Zuckerman B.M. 1988. Lectin studies of surface carbohydrates and induction of gland secretion in the free-living stages of Schistosoma mansoni. Journal of Chemical Ecology, 14, 691–700.CrossRefGoogle Scholar
  2. Coustau C., Ataev G., Jourdane J., Yoshino T.P. 1997. Schistosoma japonicum: in vitro cultivation of miracidium to daughter sporocyst using a Biomphalaria glabrata embryonic cell line. Experimental Parasitology, 87, 77–87. DOI: 10.1006/expr.1997.4184.PubMedCrossRefGoogle Scholar
  3. Daniel B.E., Preston T.M., Southgate V.R. 1992. The in vitro transformation of the miracidium to the mother sporocyst of Schistosoma margrebowiei; changes in the parasite surface and implications for interactions with snail plasma factors. Parasitology, 104, 41–49. DOI:10.1017/S0031182000060789.PubMedCrossRefGoogle Scholar
  4. Dunn T.S., Yoshino T.P. 1988. Schistosoma mansoni: origin and expression of a tegumental surface antigen on the miracidium and primary sporocyst. Experimental Parasitology, 67, 167–181. DOI: 10.1016/0014-4894(88)90064-1.PubMedCrossRefGoogle Scholar
  5. Georgieva K., Yoneva A., Popov I., Mizinska-Boevska Y., Stoitsova S. 2005. Lectin-binding properties of the surface of Fasciola hepatica sporocysts. Comptes Rendus de l’Académie Bulgare des Sciences, 58, 973–976.Google Scholar
  6. Georgieva K., Yoneva A., Mizinska-Boevska Y. 2007. Lectin binding characteristics of Fasciola hepatica rediae. Comptes Rendus de l’Académie Bulgare des Sciences, 60, 315–318.Google Scholar
  7. Gerhardus M.J.T., Baggen J.M.C., Van Der Knaap W.P.W., Sminia T. 1991. Analysis of surface carbohydrates of Trichobilharzia ocellata miracidia and sporocysts using lectin binding techniques. Parasitology, 103, 51–59. DOI: 10.1017/S0031182 00005928X.CrossRefGoogle Scholar
  8. Horák P. 1995. Developmentally regulated expression of surface carbohydrate residues on larval stages of the avian schistosome Trichobilharzia szidati. Folia Parasitologica, 42, 255–265.PubMedGoogle Scholar
  9. Horák P., van der Knaap W.P.W. 1997. Lectins in snail-trematode immune interactions: a review. Folia Parasitologica, 44, 161–172.Google Scholar
  10. Iguchi S.M.M., Momoi T., Egawa K., Matsumoto J.J. 1985. An Nacetylneuraminic acid-specific lectin from the body surface mucus of African giant snail. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 85,4, 897–900. DOI: 10.1016/0305-0491(85)90085-9.Google Scholar
  11. Ito S., Shimizu M., Nagatsuka M., Kitajima S., Honda M., Tsuchiya T., Kanzawa N. 2011. High molecular weight lectin isolated from the mucus of the giant African snail Achatina fulica. Bioscience, Biotechnology and Biochemistry, 75, 20–25. DOI: 10.1271/bbb.100389.CrossRefGoogle Scholar
  12. Køie M., Christensen N.Ø., Nansen P. 1976. Stereoscan studies of eggs, free-swimming and penetrating miracidia and early sporocysts of Fasciola hepatica. Zeitschrift für Parasitenkunde, 51, 79–90. DOI: 10.1007/BF00380530.PubMedCrossRefGoogle Scholar
  13. Laursen J.R., Yoshino T.P. 1999. Biomphalaria glabrata embryonic (Bge) cell line supports in vitro miracidial transformation and early larval development of the deer liver fluke, Fascioloides magna. Parasitology, 118, 187–194.PubMedCrossRefGoogle Scholar
  14. Lockyer A.E., Jones C.S., Noble L.R., Rollinson D. 2004. Trematodes and snails: an intimate association. Canadian Journal of Zoology, 82, 251–269. DOI: 10.1139/z03-215.CrossRefGoogle Scholar
  15. Loker E.S. 2010. Gastropod immunobiology. In: (Ed. K. Söderhäll) Invertebrate Immunity. Landes Bioscience and Springer Science + Business Media, http://www.ncbi.nlm.nih.gov/books/NBK45994/.
  16. Pales Espinosa E., Perrigault M., Ward J.E., Shumway S.E., Allam B. 2009. Lectins associated with the feeding organs of the oys ter Crassostrea virginica can mediate particle selection. Biological Bulletin, 217, 130–141.Google Scholar
  17. Peterson N.A., Hokke C.H., Deelder A.M., Yoshino T.P. 2009. Glycotope analysis in miracidia and primary sporocysts of Schistosoma mansoni: differential expression during the miracidium-to-sporocyst transformation. International Journal for Parasitology, 39, 1331–1344. DOI: 10.1016/j.ijpara.2009.06.002.PubMedCrossRefGoogle Scholar
  18. Pullin R.S.V. 1971. Composition of haemolymph of Lymnaea truncatula, the snail host of Fasciola hepatica. Comparative Biochemistry and Physiology Part A: Physiology, 40, 617–626. DOI: 10.1016/0300-9629(71)90246-5.CrossRefGoogle Scholar
  19. Rogan M.T., Threadgold L.T. 1984. Fasciola hepatica: tegumental alterations as a consequence of lectin binding. Experimental Parasitology, 57, 248–260. DOI: 10.1016/0014-4894(84) 90098-5.PubMedCrossRefGoogle Scholar
  20. Sapp K.K., Loker E.S. 2000. Mechanisms underlying digenean-snail specificity: role of miracidial attachment and host plasma factors. Journal of Parasitology, 86, 1012–1019. DOI: 10. 1645/0022-3395(2000)086[1012:MUDSSR]2.0.C0;2.PubMedCrossRefGoogle Scholar
  21. Southgate V.R. 1970. Observations on the epidermis of the miracidium and on the formation of the tegument of the sporocyst of Fasciola hepatica. Parasitology, 61, 177–190. DOI: 10.1017/S0031182000040993.PubMedCrossRefGoogle Scholar
  22. Stoitsova S., Polyakova-Krusteva O., Vinarova M. 1991. Fasciola hepatica: a cytochemical study of tegumental blebs, apical vesicles and infolds and their possible relation to surface membrane shedding. Helminthologia, 28, 5–11.Google Scholar
  23. Wilson R.A., Pullin R., Denison J. 1971. An investigation of the mechanism of infection by digenetic trematodes: the penetration of the miracidium of Fasciola hepatica into its snail host Lymnaea truncatula. Parasitology, 63, 491–506.PubMedCrossRefGoogle Scholar
  24. Yoshino T.P., Cheng T.C., Renwrantz L.R. 1977. Lectin and human blood group determinants of Schistosoma mansoni: alteration following in vitro transformation of miracidium to mother sporocyst. Journal of Parasitology, 63, 818–824.PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Katya Georgieva
    • 1
  • Simona Georgieva
    • 1
  • Yana Mizinska
    • 1
  • Stoyanka R. Stoitsova
    • 2
  1. 1.Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations