Acta Parasitologica

, Volume 57, Issue 1, pp 13–19 | Cite as

Natural infections with Cryptosporidium in the endangered spotted souslik (Spermophilus suslicus)

  • Agnieszka Kloch
  • Anna Bajer


Cryptosporidium is an intestinal protozoan parasite prevalent in a wide range of mammals. Although it has been recorded in many hosts, its impact on endangered species is poorly understood. Here we present a preliminary study of four populations of the highly threatened spotted souslik (Spermophilus suslicus), living in the westernmost part of the species range. The populations inhabit fragmented habitats and suffer from loss of genetic variation. An IFA test revealed that 35.9% of sampled animals (41/114) was infected with Cryptosporidium and none with Giardia. The prevalence and infection intensity differed among the populations. In areas grazed by cattle it was about 3 folds higher, which suggests a possible transmission route. To the authors best knowledge the present study is the first report of Cryptosporidium infections in S. suslicus.


Cryptosporidium spotted souslik Spermophilus suslicus IFA MeriFluor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander J., Stimson W.H. 1988. Sex hormones and the course of parasitic infection. Parasitology Today, 4, 198–193. DOI: 10.1016/0169-4758(88)90077-4.CrossRefGoogle Scholar
  2. Altizer S., Harvell D., Friedle E. 2003. Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology and Evolution, 18, 589–596. DOI: 10.1016/j.tree.2003.08.013.CrossRefGoogle Scholar
  3. Appelbee A.J., Thompson R.C.A., Olson M.E. 2005. Giardia and Cryptosporidium in mammalian wildlife — current status and future needs. Trends in Parasitology, 21, 370–376. DOI: 10.1016/ Scholar
  4. Bajer A. 2008. Between-year variation and spatial dynamics of Cryptosporidium spp. and Giardia spp. infections in naturally infected rodent populations. Parasitology, 135, 1629–1649. DOI: 10.1017/S0031182008004952.PubMedCrossRefGoogle Scholar
  5. Bednarska M., Bajer A., Siński E., Girouard A.S., Tamang L., Graczyk T.K. 2007. Fluorescent in situ hybridization as a tool to retrospectively identify Cryptosporidium parvum and Giardia lamblia in samples from terrestrial mammalian wildlife. Parasitology Research, 100, 455–460. DOI: 10.1007/s00436-006-0276-y.PubMedCrossRefGoogle Scholar
  6. Biedrzycka A., Kloch A., Buczek M., Radwan J. 2011. Major histocompatibility complex DRB genes and blood parasite loads in fragmented populations of the spotted suslik Spermophilus suslicus. Mammalian Biology, 76, 672–677.CrossRefGoogle Scholar
  7. Biedrzycka A., Konopiński M.K. 2007. Genetic variability and the effect of habitat fragmentation in spotted suslik Spermophilus suslicus populations from two different regions. Conservation Genetics, 9, 1211–1221. DOI: 10.1007/s10592-007-9442-8.CrossRefGoogle Scholar
  8. Biedrzycka A., Radwan J. 2008. Population fragmentation and major histocompatibility complex variation in the spotted suslik, Spermophilus suslicus. Molecular Ecology, 17, 4801–4811. DOI: 10.1111/j.1365-294X.2008.03955.x.PubMedCrossRefGoogle Scholar
  9. Brower M. 2006. Practitioner’s guide to pocket pet and rabbit theriogenology. Theriogenology, 66, 618–623. DOI: 10.1016/j.theriogenology.2006.04.015.PubMedCrossRefGoogle Scholar
  10. Cacciò S.M., Thompson A., McLauchlin J., Smith H.V. 2005. Unravelling Cryptosporidium and Giardia epidemiology. Trends in Parasitology, 21, 430–437. DOI: 10.1016/ Scholar
  11. Crawley M.J. 2007. The R book. Wiley and Sons, Chichester. DOI: 10.1002/9780470515075.CrossRefGoogle Scholar
  12. De Castro F., Bolker B. 2005. Mechanisms of disease-induced extinction. Ecology Letters, 8, 117–126. DOI: 10.1111/j.1461-0248.2004.00693.x.CrossRefGoogle Scholar
  13. Gondek A. 2004. Spotted souslik in Poland — threat and conservation programme. Biuletyn Monitoringu Przyrody, 1/2004, 21–27 (in Polish).Google Scholar
  14. Hope K., Goldsmith M.L., Graczyk T. 2004. Parasitic health of olive baboons in Bwindi Impenetrable National Park, Uganda. Veterinary Parasitology, 122, 165–170. DOI: 10.1016/j.vetpar.2004.03.017.PubMedCrossRefGoogle Scholar
  15. Lyles A.M., Dobson A.P. 1993. Infectious disease and intensive management: population dynamics, threatened hosts, and their parasites. Journal of Zoo and Wildlife Medicine, 24, 315–326.Google Scholar
  16. Mbora D.N., McPeek M.A. 2009. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. Journal of Animal Ecology, 78, 210–218. DOI: 10.1111/j.1365-2656.2008.01481.x.PubMedCrossRefGoogle Scholar
  17. McCallum H., Dobson A. 2002. Disease, habitat fragmentation and conservation. Proceedings of the Royal Society B: Biological Sciences, 269, 2041–2049. DOI: 10.1098/rspb.2002.2079.PubMedCrossRefGoogle Scholar
  18. Monis P.T., Thompson R.C. 2003. Cryptosporidium and Giardiazoonoses: fact or fiction? Infection, Genetics and Evolution, 3, 233–244. DOI: 10.1016/j.meegid.2003.08.003.PubMedCrossRefGoogle Scholar
  19. Morgan U.M., Sturdee A.P., Singleton G., Gomez M.S., Gracenea M., Torres J., Hamilton S.G., Woodside D.P., Thompson R.C. 1999. The Cryptosporidium “Mouse” Genotype Is Conserved across Geographic Areas. Journal of Clinical Microbiology, 37, 1302–1305.PubMedGoogle Scholar
  20. Nizeyi J.B., Cranfield M.R., Graczyk T.K. 2002. Cattle near the Bwindi Impenetrable National Park, Uganda, as a reservoir of Cryptosporidium parvum and Giardia duodenalis for local community and free-ranging gorillas. Parasitology Research, 88, 380–385. DOI: 10.1007/s00436-001-0543-x.PubMedCrossRefGoogle Scholar
  21. Paziewska A., Bednarska M., Niewegłowski H., Karbowiak G., Bajer A. 2007. Distribution of Cryptosporidium and Giardia spp. in selected species of protected and game mammals from North-Eastern Poland. Annales of Agricultural and Environmental Medicine, 14, 265–270.Google Scholar
  22. Próchnicki K. (ed.) 2008. Spotted suslik — a monography. Wydawnictwo Klub Przyrodników, Świebodzin (in Polish with English summary).Google Scholar
  23. R Development Core Team. 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.Google Scholar
  24. Radwan J., Biedrzycka A., Babik W. 2010. Does reduced MHC diversity decrease viability of vertebrate populations? Biologica Conservation, 143, 537–544. DOI: 10.1016/j.biocon.2009.07.026.CrossRefGoogle Scholar
  25. Sturdee A.P., Bodley-Tickell A.T., Archer A., Chalmers R.M. 2003. Long-term study of Cryptosporidium prevalence on a lowland farm in the United Kingdom. Veterinary Parasitology, 116, 97–113. DOI: 10.1016/S0304-4017(03)00261-9.PubMedCrossRefGoogle Scholar
  26. Surdacki S. 1963. Changes in distribution and numbers of Citellus suslicus in Lublin area from 1954 to 1961. Acta Theriologica, 7, 79–90 (in Polish).Google Scholar
  27. Warren K.S,. Swan R.A., Morgan-Ryan U.M., Friend J.A., Elliot A. 2003. Cryptosporidium muris infection in bilbies (Macrotis lagotis). Australian Veterinary Journal, 81, 739–741. DOI: 10.1111/j.1751-0813.2003.tb14602.x.PubMedCrossRefGoogle Scholar
  28. Xiao L., Fayer R., Ryan U., Upton S.J. 2004. Cryptosporidium Taxonomy: Recent Advances and Implications for Public Health. Clinical Microbiology Reviews, 17, 72–97. DOI: 10.1128/CMR.17.1.72-97.2004.PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
  2. 2.Department of Parasitology, Institute of ZoologyUniversity of WarsawWarsawPoland

Personalised recommendations