Acta Parasitologica

, Volume 55, Issue 4, pp 349–358 | Cite as

Ultrastructure of intrauterine eggs: Evidence of early ovoviviparity in the caryophyllidean cestode Wenyonia virilis Woodland, 1923

  • Daniel Młocicki
  • Zdzisław Świderski
  • John S. Mackiewicz
  • Mohammed H. Ibraheem


Ultrastructural evidence for early intraurerine embryonic development of Wenyonia virilis is presented. At the initial stage of egg formation, the fertilized oocyte or ovum is surrounded by numerous vitellocytes and newly formed eggshell. Individual vitellocytes undergo progressive fusion into a vitelline syncytium. During cleavage divisions, three types of blastomeres are formed: macromeres, mesomeres and micromeres. Two large macromeres contain a large nucleus with spherical nucleolus and numerous small heterochromatin islands dispersed in moderately electron-dense nucleoplasm. The granular cytoplasm shows a few large mitochondria. Medium-sized mesomeres contain a spherical nucleus with numerous heterochromatin islands, adjacent to the nuclear envelope, and a prominent electron-dense nucleolus. Their nuclei are embedded in granular cytoplasm with a few large and numerous small mitochondria and Golgi complexes. The small micromeres are characterized by presence of spherical nucleoli with large areas of highly condensed heterochromatin and a few islands of granular electron-lucent nucleoplasm. Their granular cytoplasm shows a few small lipid droplets and several spherical mitochondria. Majority of micromeres give rise to the hexacanth but many of them also undergo degeneration or apoptosis. Both mesomeres and macromeres are engaged in the formation of the oncospheral envelopes. The outer envelope is formed by a fusion of two macromeres whereas the inner envelope originates from a fusion of mesomeres. The intrauterine eggs of W. virilis usually contain an embryo at the early preoncopheral phase of development and possesses three primary envelopes: (1) thick eggshell; (2) thin cytoplasmic layer of the outer envelope and (3) inner envelope. Based on embryonic development, egg type and life-cycle characteristics, caryophyllideans tend to show closer affinities to spathebothriideans than to the former pseudophyllideans.


Caryophyllidea Wenyonia virilis egg formation intrauterine embryonated eggs ultrastructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruňanská M. 1999. Ultrastructure of primary embryonic envelopes in Proteocephalus longicollis (Cestoda: Proteocephalidea). Helminthologia, 36, 83–89.Google Scholar
  2. Euzet L., Mokhtar-Maamouri F. 1975. Développement embryonnaire de trois Cestodes du genre Acanthobothrium (Tetraphyllidea, Onchobothriidae). Annales de Parasitologie Humaine et Comparée, 50, 675–690.PubMedGoogle Scholar
  3. Euzet L., Mokhtar-Maamouri F. 1976. Développement embryonnaire de deux Phyllobothriidae (Cestoda, Tetraphyllidea). Annales de Parasitologie Humaine et Comparée, 51, 309–327.PubMedGoogle Scholar
  4. Grabiec S., Guttowa A., Jakutowicz K., Michajłow W. 1965. Studies on high energy compounds in coracidia of Triaenophorus nodulosus in various periods of their life. Acta Parasitologica Polonica, 13, 19–24.Google Scholar
  5. Grey A.J., Mackiewicz J.S. 1980. Chromosomes of the caryophyllidean cestodes: diploidy, triploidy, and parthenogenesis in Glaridacris catostomi. International Journal for Parasitology, 10, 397–407. DOI: 10.1016/0020-7519(80)90041-7.CrossRefGoogle Scholar
  6. Ibraheem M.H., Mackiewicz J.S. 2006. Scolex development, morphology and mode of attachment of Wenyonia virilis Woodland, 1923 (Cestoidea, Caryophyllidea). Acta Parasitologica, 51, 51–58. DOI: 10.2478/s11686-006-0007-7.CrossRefGoogle Scholar
  7. Jones A.W., Mackiewicz J.S. 1969. Naturally occurring triploidy and parthenogenesis in Atractolytocestus huronensis Anthony (Cestoidea: Caryophyllidea) from Cyprinus carpio L. in North America. Journal of Parasitology, 55, 1105–1118.CrossRefGoogle Scholar
  8. [Kennedy C.R. 1965a. The life history of Archigetes limnodrili (Yamaguti) (Cestoda: Caryophyllidea) and its development in invertebrate host. Parasitology, 55, 427–437. DOI: 10.1017/S0031182000069146].CrossRefGoogle Scholar
  9. Kralova-Hromadova I., Štefka J., Špakulova M., Orosova M., Bombarova M., Hanzelova V., Bazsalovicsova E., Scholz T. 2010. Intra-individual internal transcribed spacer 1 (ITS1) and ITS2 ribosomal sequence variation linked with multiple rDNA loci: A case of triploid Atractolytocestus huronensis, the monozoic cestode of common carp. International Journal for Parasitology, 40, 175–181. DOI: 10.1016/j.ijpara.2009.07.002.CrossRefPubMedGoogle Scholar
  10. Kuperman B.I. 1988. Functional morphology of lower cestodes: ontogenetic and evolutionary aspects. Izd. Nauka, Leningrad (in Russian).Google Scholar
  11. Mackiewicz J.S. 1968. Vitellogenesis and eggshell formation in Caryophyllaeus laticeps (Pallas) and Caryophyllaeides fennica (Schneider) (Cestoidea: Caryophyllidea). Zeitschrift für Parasitenkunde, 30, 18–32. DOI: 10.1007/BF00329472.CrossRefPubMedGoogle Scholar
  12. Mackiewicz J.S. 1972. Caryophyllidea (Cestoidea): a review. Experimental Parasitology, 31, 417–512. DOI: 10.1016/0014-4894(72)90103-8.CrossRefPubMedGoogle Scholar
  13. Mackiewicz J.S. 1981. Caryophyllidea (Cestoidea): evolution and classification. Advances in Parasitology, 19, 139–206. DOI: 10.1016/S0065-308X(08)60267-5.CrossRefGoogle Scholar
  14. Mackiewicz J.S. 2003. Caryophyllidea (Cestoidea): molecules, morphology and evolution. Acta Parasitologica, 48, 143–154.Google Scholar
  15. Marques J.F., Santos F.J., Gibson D.I., Cabral H.N., Olson P.D. 2007. Cryptic species of Didymobothrium rudolphii (Cestoda: Spathebothriidea) from the sand sole Solea lascaris, of the Portuguese coast with analysis of their molecules, morphology, ultrastructure and phylogeny. Parasitology, 134, 1057. DOI: 10.1017/S0031182007002491.CrossRefPubMedGoogle Scholar
  16. McKerr G. 1985. The fine structure and physiology of a trypanorhynch tapeworm Grillotia erinaceus. PhD Thesis, The Queens University of Belfast, Northern Ireland, UK.Google Scholar
  17. Miquel J., Świderski Z., Mackiewicz J.S., Ibraheem M.H. 2008. Ultrastructure of spermiogenesis in the caryophyllidean cestode Wenyonia virilisWoodland, 1923, with re-assessment of flagellar rotation in Glaridacris catostomi Cooper, 1920. Acta Parasitologica, 53, 19–29. DOI: 10.2478/s11686-008-0013-z.CrossRefGoogle Scholar
  18. Młocicki D., Świderski Z., Conn D.B. 2010. Ultrastructure of the early embryonic development of Corallobothrium fimbriatum (Cestoda: Proteocephalidea). Journal of Parasitology (in press).Google Scholar
  19. Młocicki D., Świderski Z., Eira C., Miquel J. 2005. An ultrastructural study of embryonic envelope formation in the anoplocephalid cestode Mosgovoyia ctenoides (Railliet, 1890) Beveridge, 1978. Parasitology Research, 95, 243–251. DOI: 10.1007/s00436-004-1276-4.CrossRefPubMedGoogle Scholar
  20. Mokhtar-Maamouri F. 1976. Etude ultrastructurale de la gamétogénese et des premiers stades du développement embryonaire de deux cestodes Tetraphyllidea. These du doctorat d’Etat, U.S.T.L, Montpellier, 224 pp.Google Scholar
  21. Motomura I. 1929. On the early development of monozoic cestode, Archigetes appendiculatus, including the oogenesis and fertilization. Annotationes Zoologicae Japanenses, 12, 109–129.Google Scholar
  22. Olson P.D., Poddubnaya L.G., Littlewood D.T.J., Scholz T. 2008. On the position of Archigetes and its bearing on the early evolution of the tapeworms. Journal of Parasitology, 94, 898–904. DOI: 10.1645/GE-1456.1.CrossRefPubMedGoogle Scholar
  23. Olson P.D., Tkach V.V. 2005. Advances and trends in the molecular systematics of the parasitic Platyhelminthes. Advances in Parasitology, 60, 165–243. DOI: 10.1016/S0065-308X(05)60003-6.CrossRefPubMedGoogle Scholar
  24. Oros M., Hanzelova V., Scholz T., Mackiewicz J.S. 2008. Phylogenetic relationships of the monozoic tapeworms (Eucestoda: Caryophyllidea) inferred from morphological characters. Systematic Parasitology, 70, 1–14. DOI: 10.1007/s11230-008-9133-y.CrossRefPubMedGoogle Scholar
  25. Petkevičiute R. 1992. Comparative cytogenetics of Diphyllobothrium ditremum (Creplin, 1925) and Ligula intestinalis (Linnaeus, 1758) (Cestoda: Pseudophyllidea). Systematic Parasitology, 23, 167–173. DOI: 10.1007/BF00010869.CrossRefGoogle Scholar
  26. Petkevičiute R., Kuperman B.I. 1992. Karyological investigations of Caryophyllaeus laticeps (Pallas, 1781) (Cestoda: Caryophyllidea). Folia Parasitologica, 39, 115–121.PubMedGoogle Scholar
  27. Poddubnaya L.G., Gibson D.I., Świderski Z., Olson P.D. 2006. Vitellocyte ultrastructure in the cestode Didymobothrium rudolphii (Monticelli, 1890): possible evidence for the recognition of divergent taxa within the Spathebothriidea. Acta Parasitologica, 51, 255–263. DOI: 10.2478/s11686-006-0039-z.CrossRefGoogle Scholar
  28. Read C.P., Simmons J.E. 1963. Biochemistry and physiology of tapeworms. Physiological Reviews, 43, 263–305.PubMedGoogle Scholar
  29. Rybicka K. 1966. Embryogenesis in cestodes. Advances in Parasitology, 4, 107–186. DOI: 10.1016/S0065-308X(08)60449-2.CrossRefPubMedGoogle Scholar
  30. Sandeman I.M., Burt M.D.B. 1972. Biology of Bothrimonus (= Diplocotyle) (Pseudophyllidea: Cestoda): Part II. Ecology, life cycle and evolution: a review and synthesis. Journal of the Fisheries Research Board of Canada, 29, 1381–1395.Google Scholar
  31. Scholz T. 1991. Early development of Khawia sinensis Hsü, 1935 (Cestoda: Caryophyllidea), a carp parasite. Folia Parasitologica, 38, 133–142.PubMedGoogle Scholar
  32. Scholz T. 1993. On the development of Khawia baltica Szidat, 1942 (Cestoda: Lytocestidae), a parasite of tench, Tinca tinca (L.). Folia Parasitologica, 40, 99–103.Google Scholar
  33. Smyth J.D., McManus D.P. 1989. The physiology and biochemistry of cestodes. Cambridge University Press, Cambridge, 399 pp.CrossRefGoogle Scholar
  34. Świderski Z. 1972. La structure fine de l’oncosphere du Catenotaenia pusilla (Goeze, 1782) (Cyclophyllidea, Catenotaeniidae). La Cellule, 69, 207–237.Google Scholar
  35. Świderski Z. 1994. Origin, differentiation and ultrastructure of egg envelopes surrounding the coracidia of Bothriocephalus clavibothrium (Cestoda, Pseudophyllidea). Acta Parasitologica, 39, 73–81.Google Scholar
  36. Świderski Z., Bruňanská, Młocicki D., Conn D.B. 2005. Ultrastructure of the oncospheral envelopes in the pseudophyllidean cestode Eubothrium salvelini (Schrank, 1790). Acta Parasitologica, 50, 312–318.Google Scholar
  37. Świderski Z., Bruňanska M., Poddubnaya L.G. 2004a. Ultrastructural and cytochemical studies on vitellogenesis in caryophyllidean cestode Caryophyllaeus laticeps. Proceedings of the 9th European Multicolloquium of Parasitology, Valencia, Spain, 18–23 July, 2004, 602.Google Scholar
  38. Świderski Z., Bruňanska M., Poddubnaya L.G., Mackiewicz J.S. 2004b. Cytochemical and ultrastructural study on vitellogenesis in caryophyllidean cestode Khawia armeniaca (Cholodkovski, 1915). Acta Parasitologica, 49, 16–24.Google Scholar
  39. Świderski Z., Gibson D.I., Santos M.J., Poddubnaya L.G. 2010. Ultrastructure of the intrauterine eggs of Didymobothrium rudolphii (Monticelli, 1890) (Cestoda, Spathebothriidea, Acrobothriidae) and its phylogenetic implications. Acta Parasitologica, 55, 254–269. DOI: 10.2478/s11686-010-0037-z.CrossRefGoogle Scholar
  40. Świderski Z., Mackiewicz J.S. 1976. Electron microscope study of vitellogenesis in Glaridacris catostomi (Cestoidea: Caryophyllidea). International Journal for Parasitology, 6, 61–73. DOI: 10.1016/0020-7519(76)90011-4.CrossRefPubMedGoogle Scholar
  41. Świderski Z., Mackiewicz J.S. 2002. Ultrastructure of spermatogenesis and spermatozoa of the caryophyllidean cestode Glaridacris catostomi Cooper, 1920. Acta Parasitologica, 47, 83–104.Google Scholar
  42. Świderski Z., Mackiewicz J.S. 2007a. Ovoviviparity in cestode parasites of fishes. Proceedings of the 7th International Symposium on Fish Parasites, Viterbo, Italy, September 24–28, 2007. In: Parassitologia, 49,Suppl., 393.Google Scholar
  43. Świderski Z., Mackiewicz J.S. 2007b. Ultrastructure of polylecithal and oligolecithal eggs of cestode parasites of fishes: comparative TEM study. Proceedings of the 7th International Symposium on Fish Parasites, Viterbo, Italy, September 24–28, 2007. In: Parassitologia, 49,Suppl., 394.Google Scholar
  44. Świderski Z., Mackiewicz J.S. 2004. Ultrastructural studies on the cellular organisation of the coracidium of the cestode Bothriocephalus clavibothrium Ariola, 1899 (Pseudophyllidea, Bothriocephalidae). Acta Parasitologica, 49, 116–139.Google Scholar
  45. Świderski Z., Młocicki D., Mackiewicz J.S., Miquel J., Ibraheem M.H., Bruňanská M. 2009. Ultrastructure and cytochemistry of vitellogenesis in Wenyonia virilis Woodland, 1923 (Cestoda, Caryophyllidea). Acta Parasitologica, 54, 131–142. DOI: 10.2478/s11686-009-0028-0.CrossRefGoogle Scholar
  46. Świderski Z., Ndiaye P.I., Tkach V., Miquel J., Marchand B., Chomicz L., Sereda M.J. 2001. Ultrastructural study of the embryonic development of the anoplocephalid cestode Anoplocephaloides dentata, an intestinal parasite of Arvicolidae rodents. I. Egg envelope formation. Acta Parasitologica, 46, 171–185.Google Scholar
  47. Świderski Z., Salamatin R.V., Grytner-Zięcina B., Korniushin V.V., Conn D.B. 2004c. Electron microscope study on oncospheral envelope morphogenesis in the dilepidid cestode Dilepis undula (Shrank, 1788). Acta Parasitologica, 49, 300–308.Google Scholar
  48. Świderski Z., Subilia L. 1978. Electron microscopy of embryonic envelope formation by the cestode Proteocephalus longicollis (Zeder, 1800) (Proteocephalidea). Proceedings of the 9th International Congress on Electron Microscopy, Toronto, 1978, Vol. 2, pp. 444–445.Google Scholar
  49. Świderski Z., Xylander W.E.R. 2000. Vitellocytes and vitellogenesis in cestodes in relation to development, egg production and life cycle. International Journal for Parasitology, 30, 805–817. DOI: 10.1016/S0020-7519(00)00066-7.CrossRefPubMedGoogle Scholar
  50. WiŚniewski L.W. 1930. Das Genus Archigetes R. Leuck. Eine Studie zur Anatomie, Histogenese, Systematik und Biologie. Mémoires de l’Academie Polonaise des Sciences et des Lettres, Class des Sciences Mathématiques et Naturelles, Sér. B, Sciences Naturelles, II, 2, 160 pp., 8 plates.Google Scholar
  51. Woodland W.N.F. 1923. On some remarkable new forms of Caryophyllaeidae from the Anglo-Egiptian Sudan, and a revision of the families of the Cestodaria. Quarterly Journal of Microscopical Sciences (New Series), 67, 435–472.Google Scholar
  52. Woodland W.N.F. 1926. On the genera and possible affinities of the Caryophyllaeidae: a reply to Drs. O. Fuhrman and J.G. Baer. Proceedings of the Zoological Society of London, 1926, 49–69.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Daniel Młocicki
    • 1
    • 2
  • Zdzisław Świderski
    • 1
    • 2
  • John S. Mackiewicz
    • 3
  • Mohammed H. Ibraheem
    • 4
  1. 1.W. Stefański Institute of ParasitologyPolish Academy of SciencesWarsawPoland
  2. 2.Department of General Biology and ParasitologyMedical University of WarsawWarsawPoland
  3. 3.Department of Biological SciencesState University of New York at AlbanyAlbanyUSA
  4. 4.Department of Zoology, Faculty of ScienceMinia UniversityEl-MiniaEgypt

Personalised recommendations